private void FitInternal(Matrix<double> x, Vector<double> y) { if (this.Kernel.KernelFunction != null) { // you must store a reference to X to compute the kernel in predict // TODO: add keyword copy to copy on demand this.xFit = x; x = this.ComputeKernel(x); if (x.RowCount != x.ColumnCount) { throw new ArgumentException("X.RowCount should be equal to X.ColumnCount"); } } var problem = new svm_problem(); problem.l = x.RowCount; problem.x = new svm_node[x.RowCount][]; foreach (var row in x.RowEnumerator()) { if (Kernel.LibSvmKernel == LibSvmKernel.Precomputed) { var svmNodes = row.Item2.GetIndexedEnumerator().Select(i => new svm_node { index = i.Item1 + 1, value = i.Item2 }); problem.x[row.Item1] = new[] { new svm_node { index = 0, value = row.Item1 + 1 } }.Concat(svmNodes).ToArray(); } else { var svmNodes = row.Item2.GetIndexedEnumerator().Select( i => new svm_node { index = i.Item1, value = i.Item2 }); problem.x[row.Item1] = svmNodes.ToArray(); } } problem.y = y.ToArray(); this.Param.kernel_type = (int)this.Kernel.LibSvmKernel; if (new[] { LibSvmKernel.Poly, LibSvmKernel.Rbf }.Contains(this.Kernel.LibSvmKernel) && this.Gamma == 0) { // if custom gamma is not provided ... this.Param.gamma = 1.0 / x.ColumnCount; } else { this.Param.gamma = this.Gamma; } this.Model = svm.svm_train(problem, this.Param); }
// Stratified cross validation public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target) { int i; int[] fold_start = new int[nr_fold+1]; int l = prob.l; int[] perm = new int[l]; // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if((param.svm_type == svm_parameter.C_SVC || param.svm_type == svm_parameter.NU_SVC) && nr_fold < l) { int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; // random shuffle and then data grouped by fold using the array perm int[] fold_count = new int[nr_fold]; int c; int[] index = new int[l]; for(i=0;i<l;i++) index[i]=perm[i]; for (c=0; c<nr_class; c++) for(i=0;i<count[c];i++) { int j = i+rand.Next(count[c]-i); do {int _=index[start[c]+j]; index[start[c]+j]=index[start[c]+i]; index[start[c]+i]=_;} while(false); } for(i=0;i<nr_fold;i++) { fold_count[i] = 0; for (c=0; c<nr_class;c++) fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; for (c=0; c<nr_class;c++) for(i=0;i<nr_fold;i++) { int begin = start[c]+i*count[c]/nr_fold; int end = start[c]+(i+1)*count[c]/nr_fold; for(int j=begin;j<end;j++) { perm[fold_start[i]] = index[j]; fold_start[i]++; } } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; } else { for(i=0;i<l;i++) perm[i]=i; for(i=0;i<l;i++) { int j = i+rand.Next(l-i); do {int _=perm[i]; perm[i]=perm[j]; perm[j]=_;} while(false); } for(i=0;i<=nr_fold;i++) fold_start[i]=i*l/nr_fold; } for(i=0;i<nr_fold;i++) { int begin = fold_start[i]; int end = fold_start[i+1]; int j,k; svm_problem subprob = new svm_problem(); subprob.l = l-(end-begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for(j=end;j<l;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } svm_model submodel = svm_train(subprob,param); if(param.probability==1 && (param.svm_type == svm_parameter.C_SVC || param.svm_type == svm_parameter.NU_SVC)) { double[] prob_estimates= new double[svm_get_nr_class(submodel)]; for(j=begin;j<end;j++) target[perm[j]] = svm_predict_probability(submodel,prob.x[perm[j]],prob_estimates); } else for(j=begin;j<end;j++) target[perm[j]] = svm_predict(submodel,prob.x[perm[j]]); } }
/* public static svm_model svm_load_model(String model_file_name) { return svm_load_model(new BufferedReader(new FileReader(model_file_name))); } public static svm_model svm_load_model(BufferedReader fp) { // read parameters svm_model model = new svm_model(); svm_parameter param = new svm_parameter(); model.param = param; model.rho = null; model.probA = null; model.probB = null; model.label = null; model.nSV = null; while(true) { String cmd = fp.readLine(); String arg = cmd.substring(cmd.indexOf(' ')+1); if(cmd.startsWith("svm_type")) { int i; for(i=0;i<svm_type_table.length;i++) { if(arg.indexOf(svm_type_table[i])!=-1) { param.svm_type=i; break; } } if(i == svm_type_table.length) { System.err.print("unknown svm type.\n"); return null; } } else if(cmd.startsWith("kernel_type")) { int i; for(i=0;i<kernel_type_table.length;i++) { if(arg.indexOf(kernel_type_table[i])!=-1) { param.kernel_type=i; break; } } if(i == kernel_type_table.length) { System.err.print("unknown kernel function.\n"); return null; } } else if(cmd.startsWith("degree")) param.degree = atoi(arg); else if(cmd.startsWith("gamma")) param.gamma = atof(arg); else if(cmd.startsWith("coef0")) param.coef0 = atof(arg); else if(cmd.startsWith("nr_class")) model.nr_class = atoi(arg); else if(cmd.startsWith("total_sv")) model.l = atoi(arg); else if(cmd.startsWith("rho")) { int n = model.nr_class * (model.nr_class-1)/2; model.rho = new double[n]; StringTokenizer st = new StringTokenizer(arg); for(int i=0;i<n;i++) model.rho[i] = atof(st.nextToken()); } else if(cmd.startsWith("label")) { int n = model.nr_class; model.label = new int[n]; StringTokenizer st = new StringTokenizer(arg); for(int i=0;i<n;i++) model.label[i] = atoi(st.nextToken()); } else if(cmd.startsWith("probA")) { int n = model.nr_class*(model.nr_class-1)/2; model.probA = new double[n]; StringTokenizer st = new StringTokenizer(arg); for(int i=0;i<n;i++) model.probA[i] = atof(st.nextToken()); } else if(cmd.startsWith("probB")) { int n = model.nr_class*(model.nr_class-1)/2; model.probB = new double[n]; StringTokenizer st = new StringTokenizer(arg); for(int i=0;i<n;i++) model.probB[i] = atof(st.nextToken()); } else if(cmd.startsWith("nr_sv")) { int n = model.nr_class; model.nSV = new int[n]; StringTokenizer st = new StringTokenizer(arg); for(int i=0;i<n;i++) model.nSV[i] = atoi(st.nextToken()); } else if(cmd.startsWith("SV")) { break; } else { System.err.print("unknown text in model file: ["+cmd+"]\n"); return null; } } // read sv_coef and SV int m = model.nr_class - 1; int l = model.l; model.sv_coef = new double[m][l]; model.SV = new svm_node[l][]; for(int i=0;i<l;i++) { String line = fp.readLine(); StringTokenizer st = new StringTokenizer(line," \t\n\r\f:"); for(int k=0;k<m;k++) model.sv_coef[k][i] = atof(st.nextToken()); int n = st.countTokens()/2; model.SV[i] = new svm_node[n]; for(int j=0;j<n;j++) { model.SV[i][j] = new svm_node(); model.SV[i][j].index = atoi(st.nextToken()); model.SV[i][j].value = atof(st.nextToken()); } } fp.close(); return model; } */ public static String svm_check_parameter(svm_problem prob, svm_parameter param) { // svm_type int svm_type = param.svm_type; if(svm_type != svm_parameter.C_SVC && svm_type != svm_parameter.NU_SVC && svm_type != svm_parameter.ONE_CLASS && svm_type != svm_parameter.EPSILON_SVR && svm_type != svm_parameter.NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param.kernel_type; if(kernel_type != svm_parameter.LINEAR && kernel_type != svm_parameter.POLY && kernel_type != svm_parameter.RBF && kernel_type != svm_parameter.SIGMOID && kernel_type != svm_parameter.PRECOMPUTED) return "unknown kernel type"; if(param.gamma < 0) return "gamma < 0"; if(param.degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if(param.cache_size <= 0) return "cache_size <= 0"; if(param.eps <= 0) return "eps <= 0"; if(svm_type == svm_parameter.C_SVC || svm_type == svm_parameter.EPSILON_SVR || svm_type == svm_parameter.NU_SVR) if(param.C <= 0) return "C <= 0"; if(svm_type == svm_parameter.NU_SVC || svm_type == svm_parameter.ONE_CLASS || svm_type == svm_parameter.NU_SVR) if(param.nu <= 0 || param.nu > 1) return "nu <= 0 or nu > 1"; if(svm_type == svm_parameter.EPSILON_SVR) if(param.p < 0) return "p < 0"; if(param.shrinking != 0 && param.shrinking != 1) return "shrinking != 0 and shrinking != 1"; if(param.probability != 0 && param.probability != 1) return "probability != 0 and probability != 1"; if(param.probability == 1 && svm_type == svm_parameter.ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if(svm_type == svm_parameter.NU_SVC) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int i; for(i=0;i<l;i++) { int this_label = (int)prob.y[i]; int j; for(j=0;j<nr_class;j++) if(this_label == label[j]) { ++count[j]; break; } if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; Array.Copy(label,0,new_data,0,label.Length); label = new_data; new_data = new int[max_nr_class]; Array.Copy(count,0,new_data,0,count.Length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } for(i=0;i<nr_class;i++) { int n1 = count[i]; for(int j=i+1;j<nr_class;j++) { int n2 = count[j]; if(param.nu*(n1+n2)/2 > Math.Min(n1,n2)) return "specified nu is infeasible"; } } } return null; }
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int[] data_label = new int[l]; int i; for(i=0;i<l;i++) { int this_label = (int)(prob.y[i]); int j; for(j=0;j<nr_class;j++) { if(this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; Array.Copy(label,0,new_data,0,label.Length); label = new_data; new_data = new int[max_nr_class]; Array.Copy(count,0,new_data,0,count.Length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } // // Labels are ordered by their first occurrence in the training set. // However, for two-class sets with -1/+1 labels and -1 appears first, // we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances. // if (nr_class == 2 && label[0] == -1 && label[1] == +1) { do {int _=label[0]; label[0]=label[1]; label[1]=_;} while(false); do {int _=count[0]; count[0]=count[1]; count[1]=_;} while(false); for(i=0;i<l;i++) { if(data_label[i] == 0) data_label[i] = 1; else data_label[i] = 0; } } int[] start = new int[nr_class]; start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; for(i=0;i<l;i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; nr_class_ret[0] = nr_class; label_ret[0] = label; start_ret[0] = start; count_ret[0] = count; }
// // Interface functions // public static svm_model svm_train(svm_problem prob, svm_parameter param) { svm_model model = new svm_model(); model.param = param; if(param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR) { // regression or one-class-svm model.nr_class = 2; model.label = null; model.nSV = null; model.probA = null; model.probB = null; model.sv_coef = new double[1][]; if(param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)) { model.probA = new double[1]; model.probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model.rho = new double[1]; model.rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob.l;i++) if(Math.Abs(f.alpha[i]) > 0) ++nSV; model.l = nSV; model.SV = new svm_node[nSV][]; model.sv_coef[0] = new double[nSV]; model.sv_indices = new int[nSV]; int j = 0; for(i=0;i<prob.l;i++) if(Math.Abs(f.alpha[i]) > 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; model.sv_indices[j] = i+1; ++j; } } else { // classification int l = prob.l; int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; int[] perm = new int[l]; // group training data of the same class svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; if(nr_class == 1) svm.info("WARNING: training data in only one class. See README for details.\n"); svm_node[][] x = new svm_node[l][]; int i; for(i=0;i<l;i++) x[i] = prob.x[perm[i]]; // calculate weighted C double[] weighted_C = new double[nr_class]; for(i=0;i<nr_class;i++) weighted_C[i] = param.C; for(i=0;i<param.nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param.weight_label[i] == label[j]) break; if(j == nr_class) Console.Error.Write("WARNING: class label "+param.weight_label[i]+" specified in weight is not found\n"); else weighted_C[j] *= param.weight[i]; } // train k*(k-1)/2 models bool[] nonzero = new bool[l]; for(i=0;i<l;i++) nonzero[i] = false; decision_function[] f = new decision_function[nr_class*(nr_class-1)/2]; double[] probA=null,probB=null; if (param.probability == 1) { probA=new double[nr_class*(nr_class-1)/2]; probB=new double[nr_class*(nr_class-1)/2]; } int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob = new svm_problem(); int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = new svm_node[sub_prob.l][]; sub_prob.y = new double[sub_prob.l]; int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } if(param.probability == 1) { double[] probAB=new double[2]; svm_binary_svc_probability(sub_prob,param,weighted_C[i],weighted_C[j],probAB); probA[p]=probAB[0]; probB[p]=probAB[1]; } f[p] = svm_train_one(sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && Math.Abs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && Math.Abs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for(i=0;i<nr_class;i++) model.label[i] = label[i]; model.rho = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) model.rho[i] = f[i].rho; if(param.probability == 1) { model.probA = new double[nr_class*(nr_class-1)/2]; model.probB = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) { model.probA[i] = probA[i]; model.probB[i] = probB[i]; } } else { model.probA=null; model.probB=null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.nSV = new int[nr_class]; for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++nnz; } model.nSV[i] = nSV; nz_count[i] = nSV; } svm.info("Total nSV = "+nnz+"\n"); model.l = nnz; model.SV = new svm_node[nnz][]; model.sv_indices = new int[nnz]; p = 0; for(i=0;i<l;i++) if(nonzero[i]) { model.SV[p] = x[i]; model.sv_indices[p++] = perm[i] + 1; } int[] nz_start = new int[nr_class]; nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model.sv_coef = new double[nr_class-1][]; for(i=0;i<nr_class-1;i++) model.sv_coef[i] = new double[nnz]; p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model.sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model.sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } } return model; }
// Cross-validation decision values for probability estimates private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn, double[] probAB) { int i; int nr_fold = 5; int[] perm = new int[prob.l]; double[] dec_values = new double[prob.l]; // random shuffle for(i=0;i<prob.l;i++) perm[i]=i; for(i=0;i<prob.l;i++) { int j = i+rand.Next(prob.l-i); do {int _=perm[i]; perm[i]=perm[j]; perm[j]=_;} while(false); } for(i=0;i<nr_fold;i++) { int begin = i*prob.l/nr_fold; int end = (i+1)*prob.l/nr_fold; int j,k; svm_problem subprob = new svm_problem(); subprob.l = prob.l-(end-begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for(j=end;j<prob.l;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j<k;j++) if(subprob.y[j]>0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j<end;j++) dec_values[perm[j]] = 0; else if(p_count > 0 && n_count == 0) for(j=begin;j<end;j++) dec_values[perm[j]] = 1; else if(p_count == 0 && n_count > 0) for(j=begin;j<end;j++) dec_values[perm[j]] = -1; else { svm_parameter subparam = (svm_parameter)param.Clone(); subparam.probability=0; subparam.C=1.0; subparam.nr_weight=2; subparam.weight_label = new int[2]; subparam.weight = new double[2]; subparam.weight_label[0]=+1; subparam.weight_label[1]=-1; subparam.weight[0]=Cp; subparam.weight[1]=Cn; svm_model submodel = svm_train(subprob,subparam); for(j=begin;j<end;j++) { double[] dec_value=new double[1]; svm_predict_values(submodel,prob.x[perm[j]],dec_value); dec_values[perm[j]]=dec_value[0]; // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel.label[0]; } } } sigmoid_train(prob.l,dec_values,prob.y,probAB); }
// Return parameter of a Laplace distribution private static double svm_svr_probability(svm_problem prob, svm_parameter param) { int i; int nr_fold = 5; double[] ymv = new double[prob.l]; double mae = 0; svm_parameter newparam = (svm_parameter)param.Clone(); newparam.probability = 0; svm_cross_validation(prob,newparam,nr_fold,ymv); for(i=0;i<prob.l;i++) { ymv[i]=prob.y[i]-ymv[i]; mae += Math.Abs(ymv[i]); } mae /= prob.l; double std=Math.Sqrt(2*mae*mae); int count=0; mae=0; for(i=0;i<prob.l;i++) if (Math.Abs(ymv[i]) > 5*std) count=count+1; else mae+=Math.Abs(ymv[i]); mae /= (prob.l-count); svm.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+mae+"\n"); return mae; }
private static void solve_nu_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double C = param.C; double[] alpha2 = new double[2*l]; double[] linear_term = new double[2*l]; sbyte[] y = new sbyte[2*l]; int i; double sum = C * param.nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = Math.Min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob.y[i]; y[i] = 1; linear_term[i+l] = prob.y[i]; y[i+l] = -1; } Solver_NU s = new Solver_NU(); s.Solve(2*l, new SVR_Q(prob,param), linear_term, y, alpha2, C, C, param.eps, si, param.shrinking); svm.info("epsilon = "+(-si.r)+"\n"); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; }
static decision_function svm_train_one( svm_problem prob, svm_parameter param, double Cp, double Cn) { double[] alpha = new double[prob.l]; Solver.SolutionInfo si = new Solver.SolutionInfo(); switch(param.svm_type) { case svm_parameter.C_SVC: solve_c_svc(prob,param,alpha,si,Cp,Cn); break; case svm_parameter.NU_SVC: solve_nu_svc(prob,param,alpha,si); break; case svm_parameter.ONE_CLASS: solve_one_class(prob,param,alpha,si); break; case svm_parameter.EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,si); break; case svm_parameter.NU_SVR: solve_nu_svr(prob,param,alpha,si); break; } svm.info("obj = "+si.obj+", rho = "+si.rho+"\n"); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;i<prob.l;i++) { if(Math.Abs(alpha[i]) > 0) { ++nSV; if(prob.y[i] > 0) { if(Math.Abs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(Math.Abs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } svm.info("nSV = "+nSV+", nBSV = "+nBSV+"\n"); decision_function f = new decision_function(); f.alpha = alpha; f.rho = si.rho; return f; }
private static void solve_one_class(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] zeros = new double[l]; sbyte[] ones = new sbyte[l]; int i; int n = (int)(param.nu*prob.l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; if(n<prob.l) alpha[n] = param.nu * prob.l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s = new Solver(); s.Solve(l, new ONE_CLASS_Q(prob,param), zeros, ones, alpha, 1.0, 1.0, param.eps, si, param.shrinking); }
private static void solve_epsilon_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] alpha2 = new double[2*l]; double[] linear_term = new double[2*l]; sbyte[] y = new sbyte[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param.p - prob.y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param.p + prob.y[i]; y[i+l] = -1; } Solver s = new Solver(); s.Solve(2*l, new SVR_Q(prob,param), linear_term, y, alpha2, param.C, param.C, param.eps, si, param.shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += Math.Abs(alpha[i]); } svm.info("nu = "+sum_alpha/(param.C*l)+"\n"); }
private static void solve_nu_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int i; int l = prob.l; double nu = param.nu; sbyte[] y = new sbyte[l]; for(i=0;i<l;i++) if(prob.y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = Math.Min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = Math.Min(1.0,sum_neg); sum_neg -= alpha[i]; } double[] zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s = new Solver_NU(); s.Solve(l, new SVC_Q(prob,param,y), zeros, y, alpha, 1.0, 1.0, param.eps, si, param.shrinking); double r = si.r; svm.info("C = "+1/r+"\n"); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si.rho /= r; si.obj /= (r*r); si.upper_bound_p = 1/r; si.upper_bound_n = 1/r; }
private static void solve_c_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si, double Cp, double Cn) { int l = prob.l; double[] minus_ones = new double[l]; sbyte[] y = new sbyte[l]; int i; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob.y[i] > 0) y[i] = +1; else y[i] = -1; } Solver s = new Solver(); s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y, alpha, Cp, Cn, param.eps, si, param.shrinking); double sum_alpha=0; for(i=0;i<l;i++) sum_alpha += alpha[i]; if (Cp==Cn) svm.info("nu = "+sum_alpha/(Cp*prob.l)+"\n"); for(i=0;i<l;i++) alpha[i] *= y[i]; }
public SVR_Q(svm_problem prob, svm_parameter param):base(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l,(long)(param.cache_size*(1<<20))); QD = new double[2*l]; sign = new sbyte[2*l]; index = new int[2*l]; for(int k=0;k<l;k++) { sign[k] = 1; sign[k+l] = -1; index[k] = k; index[k+l] = k; QD[k] = kernel_function(k,k); QD[k+l] = QD[k]; } buffer = new float[2][]; buffer[0] = new float[2*l]; buffer[1] = new float[2*l]; next_buffer = 0; }
public ONE_CLASS_Q(svm_problem prob, svm_parameter param):base(prob.l, prob.x, param) { cache = new Cache(prob.l,(long)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i<prob.l;i++) QD[i] = kernel_function(i,i); }
public SVC_Q(svm_problem prob, svm_parameter param, sbyte[] y_):base(prob.l, prob.x, param) { y = (sbyte[])y_.Clone(); cache = new Cache(prob.l,(long)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i<prob.l;i++) QD[i] = kernel_function(i,i); }