public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates) { if ((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) && model.probA!=null && model.probB!=null) { int i; int nr_class = model.nr_class; double[] dec_values = new double[nr_class*(nr_class-1)/2]; svm_predict_values(model, x, dec_values); double min_prob=1e-7; double[,] pairwise_prob=new double[nr_class, nr_class]; int k=0; for(i=0;i<nr_class;i++) { for (int j = i + 1; j < nr_class; j++) { pairwise_prob[i,j] = Math.Min(Math.Max(sigmoid_predict(dec_values[k], model.probA[k], model.probB[k]), min_prob), 1 - min_prob); pairwise_prob[j,i] = 1 - pairwise_prob[i,j]; k++; } } multiclass_probability(nr_class,pairwise_prob,prob_estimates); int prob_max_idx = 0; for(i=1;i<nr_class;i++) if(prob_estimates[i] > prob_estimates[prob_max_idx]) prob_max_idx = i; return model.label[prob_max_idx]; } else return svm_predict(model, x); }
public static int svm_check_probability_model(svm_model model) { if (((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) && model.probA!=null && model.probB!=null) || ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) && model.probA!=null)) return 1; else return 0; }
public static double svm_predict_values(svm_model model, svm_node[] x, double[] dec_values) { int i; if(model.param.svm_type == svm_parameter.ONE_CLASS || model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) { double[] sv_coef = model.sv_coef[0]; double sum = 0; for(i=0;i<model.l;i++) sum += sv_coef[i] * Kernel.k_function(x,model.SV[i],model.param); sum -= model.rho[0]; dec_values[0] = sum; if(model.param.svm_type == svm_parameter.ONE_CLASS) return (sum>0)?1:-1; else return sum; } else { int nr_class = model.nr_class; int l = model.l; double[] kvalue = new double[l]; for(i=0;i<l;i++) kvalue[i] = Kernel.k_function(x,model.SV[i],model.param); int[] start = new int[nr_class]; start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+model.nSV[i-1]; int[] vote = new int[nr_class]; for(i=0;i<nr_class;i++) vote[i] = 0; int p=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { double sum = 0; int si = start[i]; int sj = start[j]; int ci = model.nSV[i]; int cj = model.nSV[j]; int k; double[] coef1 = model.sv_coef[j-1]; double[] coef2 = model.sv_coef[i]; for(k=0;k<ci;k++) sum += coef1[si+k] * kvalue[si+k]; for(k=0;k<cj;k++) sum += coef2[sj+k] * kvalue[sj+k]; sum -= model.rho[p]; dec_values[p] = sum; if(dec_values[p] > 0) ++vote[i]; else ++vote[j]; p++; } int vote_max_idx = 0; for(i=1;i<nr_class;i++) if(vote[i] > vote[vote_max_idx]) vote_max_idx = i; return model.label[vote_max_idx]; } }
public static double svm_predict(svm_model model, svm_node[] x) { int nr_class = model.nr_class; double[] dec_values; if(model.param.svm_type == svm_parameter.ONE_CLASS || model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) dec_values = new double[1]; else dec_values = new double[nr_class*(nr_class-1)/2]; double pred_result = svm_predict_values(model, x, dec_values); return pred_result; }
public static int svm_get_nr_sv(svm_model model) { return model.l; }
public static double svm_get_svr_probability(svm_model model) { if ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) && model.probA!=null) return model.probA[0]; else { Console.Error.Write("Model doesn't contain information for SVR probability inference\n"); return 0; } }
public static void svm_get_sv_indices(svm_model model, int[] indices) { if (model.sv_indices != null) for(int i=0;i<model.l;i++) indices[i] = model.sv_indices[i]; }
public static void svm_get_labels(svm_model model, int[] label) { if (model.label != null) for(int i=0;i<model.nr_class;i++) label[i] = model.label[i]; }
public static int svm_get_nr_class(svm_model model) { return model.nr_class; }
public static int svm_get_svm_type(svm_model model) { return model.param.svm_type; }
// // Interface functions // public static svm_model svm_train(svm_problem prob, svm_parameter param) { svm_model model = new svm_model(); model.param = param; if(param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR) { // regression or one-class-svm model.nr_class = 2; model.label = null; model.nSV = null; model.probA = null; model.probB = null; model.sv_coef = new double[1][]; if(param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)) { model.probA = new double[1]; model.probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model.rho = new double[1]; model.rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob.l;i++) if(Math.Abs(f.alpha[i]) > 0) ++nSV; model.l = nSV; model.SV = new svm_node[nSV][]; model.sv_coef[0] = new double[nSV]; model.sv_indices = new int[nSV]; int j = 0; for(i=0;i<prob.l;i++) if(Math.Abs(f.alpha[i]) > 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; model.sv_indices[j] = i+1; ++j; } } else { // classification int l = prob.l; int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; int[] perm = new int[l]; // group training data of the same class svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; if(nr_class == 1) svm.info("WARNING: training data in only one class. See README for details.\n"); svm_node[][] x = new svm_node[l][]; int i; for(i=0;i<l;i++) x[i] = prob.x[perm[i]]; // calculate weighted C double[] weighted_C = new double[nr_class]; for(i=0;i<nr_class;i++) weighted_C[i] = param.C; for(i=0;i<param.nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param.weight_label[i] == label[j]) break; if(j == nr_class) Console.Error.Write("WARNING: class label "+param.weight_label[i]+" specified in weight is not found\n"); else weighted_C[j] *= param.weight[i]; } // train k*(k-1)/2 models bool[] nonzero = new bool[l]; for(i=0;i<l;i++) nonzero[i] = false; decision_function[] f = new decision_function[nr_class*(nr_class-1)/2]; double[] probA=null,probB=null; if (param.probability == 1) { probA=new double[nr_class*(nr_class-1)/2]; probB=new double[nr_class*(nr_class-1)/2]; } int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob = new svm_problem(); int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = new svm_node[sub_prob.l][]; sub_prob.y = new double[sub_prob.l]; int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } if(param.probability == 1) { double[] probAB=new double[2]; svm_binary_svc_probability(sub_prob,param,weighted_C[i],weighted_C[j],probAB); probA[p]=probAB[0]; probB[p]=probAB[1]; } f[p] = svm_train_one(sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && Math.Abs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && Math.Abs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for(i=0;i<nr_class;i++) model.label[i] = label[i]; model.rho = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) model.rho[i] = f[i].rho; if(param.probability == 1) { model.probA = new double[nr_class*(nr_class-1)/2]; model.probB = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) { model.probA[i] = probA[i]; model.probB[i] = probB[i]; } } else { model.probA=null; model.probB=null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.nSV = new int[nr_class]; for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++nnz; } model.nSV[i] = nSV; nz_count[i] = nSV; } svm.info("Total nSV = "+nnz+"\n"); model.l = nnz; model.SV = new svm_node[nnz][]; model.sv_indices = new int[nnz]; p = 0; for(i=0;i<l;i++) if(nonzero[i]) { model.SV[p] = x[i]; model.sv_indices[p++] = perm[i] + 1; } int[] nz_start = new int[nr_class]; nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model.sv_coef = new double[nr_class-1][]; for(i=0;i<nr_class-1;i++) model.sv_coef[i] = new double[nnz]; p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model.sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model.sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } } return model; }