Esempio n. 1
0
        private static void solve_one_class(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int l = prob.Lenght;

            double[] zeros = new double[l];
            sbyte[]  ones  = new sbyte[l];
            int      i;

            int n = (int)(param.Nu * prob.Lenght); // # of alpha's at upper bound

            for (i = 0; i < n; i++)
            {
                alpha[i] = 1;
            }
            if (n < prob.Lenght)
            {
                alpha[n] = param.Nu * prob.Lenght - n;
            }
            for (i = n + 1; i < l; i++)
            {
                alpha[i] = 0;
            }

            for (i = 0; i < l; i++)
            {
                zeros[i] = 0;
                ones[i]  = 1;
            }

            var s = new Solver();

            s.Solve(l, new OneClassQ(prob, param), zeros, ones,
                    alpha, 1.0, 1.0, param.Eps, si, param.Shrinking);
        }
Esempio n. 2
0
        private static void solve_epsilon_svr(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int l = prob.Lenght;

            double[] alpha2      = new double[2 * l];
            double[] linear_term = new double[2 * l];
            sbyte[]  y           = new sbyte[2 * l];
            int      i;

            for (i = 0; i < l; i++)
            {
                alpha2[i]      = 0;
                linear_term[i] = param.P - prob.Y[i];
                y[i]           = 1;

                alpha2[i + l]      = 0;
                linear_term[i + l] = param.P + prob.Y[i];
                y[i + l]           = -1;
            }

            Solver s = new Solver();

            s.Solve(2 * l, new SvrQ(prob, param), linear_term, y,
                    alpha2, param.C, param.C, param.Eps, si, param.Shrinking);

            double sum_alpha = 0;

            for (i = 0; i < l; i++)
            {
                alpha[i]   = alpha2[i] - alpha2[i + l];
                sum_alpha += Math.Abs(alpha[i]);
            }
            Svm.info("nu = " + sum_alpha / (param.C * l) + "\n");
        }
Esempio n. 3
0
 public OneClassQ(SvmProblem prob, SvmParameter param)
     : base(prob.Lenght, prob.X, param)
 {
     _cache = new Cache(prob.Lenght, (long)(param.CacheSize * (1 << 20)));
       _qd = new double[prob.Lenght];
       for (int i = 0; i < prob.Lenght; i++)
     _qd[i] = kernel_function(i, i);
 }
Esempio n. 4
0
 public OneClassQ(SvmProblem prob, SvmParameter param)
     : base(prob.Lenght, prob.X, param)
 {
     _cache = new Cache(prob.Lenght, (long)(param.CacheSize * (1 << 20)));
     _qd    = new double[prob.Lenght];
     for (int i = 0; i < prob.Lenght; i++)
     {
         _qd[i] = kernel_function(i, i);
     }
 }
Esempio n. 5
0
 public SvcQ(SvmProblem prob, SvmParameter param, sbyte[] y_)
     : base(prob.Lenght, prob.X, param)
 {
     //super(prob.l, prob.x, param);
     y     = (sbyte[])y_.Clone();
     cache = new Cache(prob.Lenght, (long)(param.CacheSize * (1 << 20)));
     QD    = new double[prob.Lenght];
     for (int i = 0; i < prob.Lenght; i++)
     {
         QD[i] = kernel_function(i, i);
     }
 }
Esempio n. 6
0
        //from Svm.svm_check_parameter
        public void Check(SvmProblem prob)
        {
            if (Gamma < 0)
            {
                throw new Exception("gamma < 0");
            }

            if (Degree < 0)
            {
                throw new Exception("degree of polynomial kernel < 0");
            }

            // cache_size,eps,C,nu,p,shrinking

            if (CacheSize <= 0)
            {
                throw new Exception("cache_size <= 0");
            }

            if (Eps <= 0)
            {
                throw new Exception("eps <= 0");
            }

            if (SvmType.UseCParameter() && C <= 0)
            {
                throw new Exception("C <= 0");
            }

            if (SvmType.UseNuParameter() && (Nu <= 0 || Nu > 1))
            {
                throw new Exception("nu <= 0 or nu > 1");
            }

            if (SvmType.UsePParameter() && P < 0)
            {
                throw new Exception("p < 0");
            }

            if (Probability && SvmType.IsOneClass())
            {
                throw new Exception("one-class SVM probability output not supported yet");
            }

            // check whether nu-svc is feasible
            IsNuFeasible(prob);
        }
Esempio n. 7
0
        //from Svm.svm_check_parameter
        public void Check(SvmProblem prob)
        {
            if (Gamma < 0)
              {
            throw new ApplicationException("gamma < 0");
              }

              if (Degree < 0)
              {
            throw new ApplicationException("degree of polynomial kernel < 0");
              }

              // cache_size,eps,C,nu,p,shrinking

              if (CacheSize <= 0)
              {
            throw new ApplicationException("cache_size <= 0");
              }

              if (Eps <= 0)
              {
            throw new ApplicationException("eps <= 0");
              }

              if (SvmType.UseCParameter() && C <= 0)
              {
            throw new ApplicationException("C <= 0");
              }

              if (SvmType.UseNuParameter() && (Nu <= 0 || Nu > 1))
              {
            throw new ApplicationException("nu <= 0 or nu > 1");
              }

              if (SvmType.UsePParameter() && P < 0)
              {
            throw new ApplicationException("p < 0");
              }

              if (Probability && SvmType.IsOneClass())
              {
            throw new ApplicationException("one-class SVM probability output not supported yet");
              }

              // check whether nu-svc is feasible
              IsNuFeasible(prob);
        }
Esempio n. 8
0
        private static void solve_c_svc(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si, double Cp, double Cn)
        {
            int l = prob.Lenght;

            double[] minus_ones = new double[l];
            sbyte[]  y          = new sbyte[l];

            for (int i = 0; i < l; i++)
            {
                alpha[i]      = 0;
                minus_ones[i] = -1;

                if (prob.Y[i] > 0)
                {
                    y[i] = +1;
                }
                else
                {
                    y[i] = -1;
                }
            }

            Solver s = new Solver();

            s.Solve(l, new SvcQ(prob, param, y), minus_ones, y,
                    alpha, Cp, Cn, param.Eps, si, param.Shrinking);

            double sum_alpha = 0;

            for (int i = 0; i < l; i++)
            {
                sum_alpha += alpha[i];
            }

            if (Cp == Cn)
            {
                Svm.info("nu = " + sum_alpha / (Cp * prob.Lenght) + "\n");
            }

            for (int i = 0; i < l; i++)
            {
                alpha[i] *= y[i];
            }
        }
Esempio n. 9
0
        public static void Run()
        {
            Console.WriteLine("EpsSVRDemo");
              var rnd = new Random();

              var trainData = DemoHelper.Range(-10.0, 10.01, 0.1).Select(val => new { X = val, Y = DemoHelper.Sinc(val) + (rnd.NextDouble() - 0.5) / 4 });

              var parameters = new SvmParameter
              {
            SvmType = SvmType.EPSILON_SVR,
            KernelType = KernelType.Rbf,
            Gamma = 0.5,
            CacheSize = 128,
            C = 1,
            Eps = 1e-3,
            P = 0.1,
            Shrinking = true,
            Probability = false
              };

              var problem = new SvmProblem
              {
            Y = trainData.Select(p => p.Y).ToArray(),
            X = trainData.Select(p => p.X.ToSvmNodes()).ToArray()
              };

              parameters.Check(problem);

              var model = Svm.Train(problem, parameters);

              foreach (var item in DemoHelper.Range(-1.0, 1.01, 0.1))
              {
            var x = item.ToSvmNodes();
            var yPred = model.Predict(x);
            var yReal = DemoHelper.Sinc(item);
            Console.WriteLine("x: {0}", item);
            Console.WriteLine("y_real: {0}", yReal);
            Console.WriteLine("y_pred: {0}", yPred);
            Console.WriteLine();
              }
        }
Esempio n. 10
0
        public static void Run()
        {
            Console.WriteLine("OneClassDemo");
              var trainData = DemoHelper.GenerateClass(0, 0.5, 0.5, 100);

              var parameters = new SvmParameter
              {
            SvmType = SvmType.ONE_CLASS,
            KernelType = KernelType.Rbf,
            Gamma = 0.5,
            Nu = 0.5,
            CacheSize = 128,
            Eps = 1e-3,
            Shrinking = true,
            Probability = false
              };

              var problem = new SvmProblem
              {
            Y = trainData.Select(p => 1.0).ToArray(),
            X = trainData.Select(p => p.ToSvmNodes()).ToArray()
              };

              parameters.Check(problem);

              var model = Svm.Train(problem, parameters);

              var x = new Point(0.9, 0.9).ToSvmNodes();
              var resx = model.Predict(x);
              Console.WriteLine(resx);

              var y = new Point(0.5, 0.5).ToSvmNodes();
              var resy = model.Predict(y);
              Console.WriteLine(resy);

              var z = new Point(0.45, 0.45).ToSvmNodes();
              var resz = model.Predict(z);
              Console.WriteLine(resz);
        }
Esempio n. 11
0
        public static void Run()
        {
            Console.WriteLine("CSVMDemo");
              var class1 = DemoHelper.GenerateClass(0, 0.1, 0.1, 50);
              var class2 = DemoHelper.GenerateClass(1, 0.8, 0.8, 50);

              var trainData = class1.Concat(class2);

              var parameters = new SvmParameter
              {
            SvmType = SvmType.C_SVC,
            KernelType = KernelType.Rbf,
            Gamma = 0.5,
            CacheSize = 128,
            C = 1,
            Eps = 1e-3,
            Shrinking = true,
            Probability = false
              };

              var problem = new SvmProblem
              {
            Y = trainData.Select(p => (double)p.Label).ToArray(),
            X = trainData.Select(p => p.ToSvmNodes()).ToArray()
              };

              parameters.Check(problem);

              var model = Svm.Train(problem, parameters);

              var x = new Point(0.9, 0.9).ToSvmNodes();
              var resx = model.Predict(x);
              Console.WriteLine(resx);

              var y = new Point(0.1, 0.1).ToSvmNodes();
              var resy = model.Predict(y);
              Console.WriteLine(resy);
        }
Esempio n. 12
0
        // Return parameter of a Laplace distribution
        private static double svm_svr_probability(SvmProblem prob, SvmParameter param)
        {
            int i;
            int nr_fold = 5;

            double[] ymv = new double[prob.Lenght];
            double   mae = 0;

            var newparam = (SvmParameter)param.Clone();

            newparam.Probability = false;
            CrossValidation(prob, newparam, nr_fold, ymv);
            for (i = 0; i < prob.Lenght; i++)
            {
                ymv[i] = prob.Y[i] - ymv[i];
                mae   += Math.Abs(ymv[i]);
            }
            mae /= prob.Lenght;
            double std   = Math.Sqrt(2 * mae * mae);
            int    count = 0;

            mae = 0;
            for (i = 0; i < prob.Lenght; i++)
            {
                if (Math.Abs(ymv[i]) > 5 * std)
                {
                    count = count + 1;
                }
                else
                {
                    mae += Math.Abs(ymv[i]);
                }
            }
            mae /= (prob.Lenght - count);
            Svm.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\n");
            return(mae);
        }
Esempio n. 13
0
        public SvrQ(SvmProblem prob, SvmParameter param)
            : base(prob.Lenght, prob.X, param)
        {
            l     = prob.Lenght;
            cache = new Cache(l, (long)(param.CacheSize * (1 << 20)));

            QD    = new double[2 * l];
            sign  = new sbyte[2 * l];
            index = new int[2 * l];

            for (int k = 0; k < l; k++)
            {
                sign[k]      = 1;
                sign[k + l]  = -1;
                index[k]     = k;
                index[k + l] = k;
                QD[k]        = kernel_function(k, k);
                QD[k + l]    = QD[k];
            }

            buffer = new double[2][] { new double[2 * l], new double[2 * l] };

            next_buffer = 0;
        }
Esempio n. 14
0
        private static void solve_nu_svr(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int    l = prob.Lenght;
            double C = param.C;

            double[] alpha2      = new double[2 * l];
            double[] linear_term = new double[2 * l];
            sbyte[]  y           = new sbyte[2 * l];
            int      i;

            double sum = C * param.Nu * l / 2;

            for (i = 0; i < l; i++)
            {
                alpha2[i] = alpha2[i + l] = Math.Min(sum, C);
                sum      -= alpha2[i];

                linear_term[i] = -prob.Y[i];
                y[i]           = 1;

                linear_term[i + l] = prob.Y[i];
                y[i + l]           = -1;
            }

            var s = new SolverNu();

            s.Solve(2 * l, new SvrQ(prob, param), linear_term, y,
                    alpha2, C, C, param.Eps, si, param.Shrinking);

            Svm.info("epsilon = " + (-si.R) + "\n");

            for (i = 0; i < l; i++)
            {
                alpha[i] = alpha2[i] - alpha2[i + l];
            }
        }
Esempio n. 15
0
        public SvrQ(SvmProblem prob, SvmParameter param)
            : base(prob.Lenght, prob.X, param)
        {
            l = prob.Lenght;
              cache = new Cache(l, (long)(param.CacheSize * (1 << 20)));

              QD = new double[2 * l];
              sign = new sbyte[2 * l];
              index = new int[2 * l];

              for (int k = 0; k < l; k++)
              {
            sign[k] = 1;
            sign[k + l] = -1;
            index[k] = k;
            index[k + l] = k;
            QD[k] = kernel_function(k, k);
            QD[k + l] = QD[k];
              }

              buffer = new double[2][] { new double[2 * l], new double[2 * l] };

              next_buffer = 0;
        }
Esempio n. 16
0
        // Cross-validation decision values for probability estimates
        private static void svm_binary_svc_probability(SvmProblem prob, SvmParameter param, double Cp, double Cn, double[] probAB)
        {
            //int i;
            int nr_fold = 5;

            int[]    perm       = new int[prob.Lenght];
            double[] dec_values = new double[prob.Lenght];

            // random shuffle
            var rnd = new Random();

            for (int i = 0; i < prob.Lenght; i++)
            {
                perm[i] = i;
            }

            for (int i = 0; i < prob.Lenght; i++)
            {
                int j = i + (int)(rnd.NextDouble() * (prob.Lenght - i));
                //do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
                Common.Swap(ref perm[i], ref perm[j]);
            }

            for (int i = 0; i < nr_fold; i++)
            {
                int begin = i * prob.Lenght / nr_fold;
                int end   = (i + 1) * prob.Lenght / nr_fold;
                //int j;

                var subprobLenght = prob.Lenght - (end - begin);
                var subprob       = new SvmProblem
                {
                    X = new SvmNode[subprobLenght][],
                    Y = new double[subprobLenght]
                };

                int k = 0;
                for (int j = 0; j < begin; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }

                for (int j = end; j < prob.Lenght; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }

                int p_count = 0, n_count = 0;

                for (int j = 0; j < k; j++)
                {
                    if (subprob.Y[j] > 0)
                    {
                        p_count++;
                    }
                    else
                    {
                        n_count++;
                    }
                }

                if (p_count == 0 && n_count == 0)
                {
                    for (int j = begin; j < end; j++)
                    {
                        dec_values[perm[j]] = 0;
                    }
                }
                else if (p_count > 0 && n_count == 0)
                {
                    for (int j = begin; j < end; j++)
                    {
                        dec_values[perm[j]] = 1;
                    }
                }
                else if (p_count == 0 && n_count > 0)
                {
                    for (int j = begin; j < end; j++)
                    {
                        dec_values[perm[j]] = -1;
                    }
                }
                else
                {
                    var subparam = (SvmParameter)param.Clone();
                    subparam.Probability    = false;
                    subparam.C              = 1.0;
                    subparam.WeightLabel    = new int[2];
                    subparam.Weight         = new double[2];
                    subparam.WeightLabel[0] = +1;
                    subparam.WeightLabel[1] = -1;
                    subparam.Weight[0]      = Cp;
                    subparam.Weight[1]      = Cn;
                    var submodel = Train(subprob, subparam);
                    for (int j = begin; j < end; j++)
                    {
                        double[] dec_value = new double[1];
                        submodel.PredictValues(prob.X[perm[j]], dec_value);
                        dec_values[perm[j]] = dec_value[0];
                        // ensure +1 -1 order; reason not using CV subroutine
                        dec_values[perm[j]] *= submodel.Label[0];
                    }
                }
            }
            sigmoid_train(prob.Lenght, dec_values, prob.Y, probAB);
        }
Esempio n. 17
0
        // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
        // perm, length l, must be allocated before calling this subroutine
        private static void svm_group_classes(SvmProblem prob, out int nr_class_ret, out int[] label_ret, out int[] start_ret, out int[] count_ret, int[] perm)
        {
            int l            = prob.Lenght;
            int max_nr_class = 16;
            int nr_class     = 0;

            int[] label      = new int[max_nr_class];
            int[] count      = new int[max_nr_class];
            int[] data_label = new int[l];
            int   i;

            for (i = 0; i < l; i++)
            {
                int this_label = (int)(prob.Y[i]);
                int j;
                for (j = 0; j < nr_class; j++)
                {
                    if (this_label == label[j])
                    {
                        ++count[j];
                        break;
                    }
                }
                data_label[i] = j;
                if (j == nr_class)
                {
                    if (nr_class == max_nr_class)
                    {
                        max_nr_class *= 2;
                        int[] new_data = new int[max_nr_class];
                        Array.Copy(label, 0, new_data, 0, label.Length);
                        label    = new_data;
                        new_data = new int[max_nr_class];
                        Array.Copy(count, 0, new_data, 0, count.Length);

                        count = new_data;
                    }
                    label[nr_class] = this_label;
                    count[nr_class] = 1;
                    ++nr_class;
                }
            }

            int[] start = new int[nr_class];
            start[0] = 0;
            for (i = 1; i < nr_class; i++)
            {
                start[i] = start[i - 1] + count[i - 1];
            }
            for (i = 0; i < l; i++)
            {
                perm[start[data_label[i]]] = i;
                ++start[data_label[i]];
            }
            start[0] = 0;
            for (i = 1; i < nr_class; i++)
            {
                start[i] = start[i - 1] + count[i - 1];
            }

            nr_class_ret = nr_class;
            label_ret    = label;
            start_ret    = start;
            count_ret    = count;
        }
Esempio n. 18
0
        // check whether nu-svc is feasible
        private void IsNuFeasible(SvmProblem prob)
        {
            if (!SvmType.IsNuSVC())
            {
                return;
            }

            int l            = prob.Lenght;
            int max_nr_class = 16;
            int nr_class     = 0;

            int[] label = new int[max_nr_class];
            int[] count = new int[max_nr_class];

            int i;

            for (i = 0; i < l; i++)
            {
                int this_label = (int)prob.Y[i];
                int j;
                for (j = 0; j < nr_class; j++)
                {
                    if (this_label == label[j])
                    {
                        ++count[j];
                        break;
                    }
                }

                if (j == nr_class)
                {
                    if (nr_class == max_nr_class)
                    {
                        max_nr_class *= 2;
                        int[] new_data = new int[max_nr_class];
                        Array.Copy(label, 0, new_data, 0, label.Length);
                        label = new_data;

                        new_data = new int[max_nr_class];
                        Array.Copy(count, 0, new_data, 0, count.Length);
                        count = new_data;
                    }
                    label[nr_class] = this_label;
                    count[nr_class] = 1;
                    ++nr_class;
                }
            }

            for (i = 0; i < nr_class; i++)
            {
                int n1 = count[i];
                for (int j = i + 1; j < nr_class; j++)
                {
                    int n2 = count[j];
                    if (this.Nu * (n1 + n2) / 2 > Math.Min(n1, n2))
                    {
                        throw new Exception("specified nu is infeasible");
                    }
                }
            }
        }
Esempio n. 19
0
        private static void solve_one_class(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int l = prob.Lenght;
              double[] zeros = new double[l];
              sbyte[] ones = new sbyte[l];
              int i;

              int n = (int)(param.Nu * prob.Lenght);	// # of alpha's at upper bound

              for (i = 0; i < n; i++)
            alpha[i] = 1;
              if (n < prob.Lenght)
            alpha[n] = param.Nu * prob.Lenght - n;
              for (i = n + 1; i < l; i++)
            alpha[i] = 0;

              for (i = 0; i < l; i++)
              {
            zeros[i] = 0;
            ones[i] = 1;
              }

              var s = new Solver();
              s.Solve(l, new OneClassQ(prob, param), zeros, ones,
            alpha, 1.0, 1.0, param.Eps, si, param.Shrinking);
        }
Esempio n. 20
0
        // Cross-validation decision values for probability estimates
        private static void svm_binary_svc_probability(SvmProblem prob, SvmParameter param, double Cp, double Cn, double[] probAB)
        {
            //int i;
              int nr_fold = 5;
              int[] perm = new int[prob.Lenght];
              double[] dec_values = new double[prob.Lenght];

              // random shuffle
              var rnd = new Random();
              for (int i = 0; i < prob.Lenght; i++) perm[i] = i;

              for (int i = 0; i < prob.Lenght; i++)
              {
            int j = i + (int)(rnd.NextDouble() * (prob.Lenght - i));
            //do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
            Common.Swap(ref perm[i], ref perm[j]);
              }

              for (int i = 0; i < nr_fold; i++)
              {
            int begin = i * prob.Lenght / nr_fold;
            int end = (i + 1) * prob.Lenght / nr_fold;
            //int j;

            var subprobLenght = prob.Lenght - (end - begin);
            var subprob = new SvmProblem
            {
              X = new SvmNode[subprobLenght][],
              Y = new double[subprobLenght]
            };

            int k = 0;
            for (int j = 0; j < begin; j++)
            {
              subprob.X[k] = prob.X[perm[j]];
              subprob.Y[k] = prob.Y[perm[j]];
              ++k;
            }

            for (int j = end; j < prob.Lenght; j++)
            {
              subprob.X[k] = prob.X[perm[j]];
              subprob.Y[k] = prob.Y[perm[j]];
              ++k;
            }

            int p_count = 0, n_count = 0;

            for (int j = 0; j < k; j++)
              if (subprob.Y[j] > 0)
            p_count++;
              else
            n_count++;

            if (p_count == 0 && n_count == 0)
              for (int j = begin; j < end; j++)
            dec_values[perm[j]] = 0;
            else if (p_count > 0 && n_count == 0)
              for (int j = begin; j < end; j++)
            dec_values[perm[j]] = 1;
            else if (p_count == 0 && n_count > 0)
              for (int j = begin; j < end; j++)
            dec_values[perm[j]] = -1;
            else
            {
              var subparam = (SvmParameter)param.Clone();
              subparam.Probability = false;
              subparam.C = 1.0;
              subparam.WeightLabel = new int[2];
              subparam.Weight = new double[2];
              subparam.WeightLabel[0] = +1;
              subparam.WeightLabel[1] = -1;
              subparam.Weight[0] = Cp;
              subparam.Weight[1] = Cn;
              var submodel = Train(subprob, subparam);
              for (int j = begin; j < end; j++)
              {
            double[] dec_value = new double[1];
            submodel.PredictValues(prob.X[perm[j]], dec_value);
            dec_values[perm[j]] = dec_value[0];
            // ensure +1 -1 order; reason not using CV subroutine
            dec_values[perm[j]] *= submodel.Label[0];
              }
            }
              }
              sigmoid_train(prob.Lenght, dec_values, prob.Y, probAB);
        }
Esempio n. 21
0
        //
        // Interface functions
        //
        public static SvmModel Train(SvmProblem prob, SvmParameter param)
        {
            var model = new SvmModel();

            model.Param = param;

            if (param.SvmType.IsSVROrOneClass())
            {
                // regression or one-class-svm
                model.NrClass = 2;
                model.Label   = null;
                model.SupportVectorsNumbers = null;
                model.ProbA = null; model.ProbB = null;
                model.SupportVectorsCoefficients = new double[1][];

                if (param.Probability && param.SvmType.IsSVR())
                {
                    model.ProbA    = new double[1];
                    model.ProbA[0] = svm_svr_probability(prob, param);
                }

                DecisionFunction f = svm_train_one(prob, param, 0, 0);
                model.Rho    = new double[1];
                model.Rho[0] = f.Rho;

                int nSV = 0;
                int i;
                for (i = 0; i < prob.Lenght; i++)
                {
                    if (Math.Abs(f.Alpha[i]) > 0)
                    {
                        ++nSV;
                    }
                }
                model.TotalSupportVectorsNumber     = nSV;
                model.SupportVectors                = new SvmNode[nSV][];
                model.SupportVectorsCoefficients[0] = new double[nSV];
                int j = 0;
                for (i = 0; i < prob.Lenght; i++)
                {
                    if (Math.Abs(f.Alpha[i]) > 0)
                    {
                        model.SupportVectors[j] = prob.X[i];
                        model.SupportVectorsCoefficients[0][j] = f.Alpha[i];
                        ++j;
                    }
                }
            }
            else
            {
                // classification
                int   l    = prob.Lenght;
                int[] perm = new int[l];

                int   nr_class;
                int[] label;
                int[] start;
                int[] count;

                // group training data of the same class
                svm_group_classes(prob, out nr_class, out label, out start, out count, perm);

                if (nr_class == 1)
                {
                    Svm.info("WARNING: training data in only one class. See README for details.\n");
                }

                SvmNode[][] x = new SvmNode[l][];
                int         i;
                for (i = 0; i < l; i++)
                {
                    x[i] = prob.X[perm[i]];
                }

                // calculate weighted C

                double[] weighted_C = new double[nr_class];
                for (i = 0; i < nr_class; i++)
                {
                    weighted_C[i] = param.C;
                }
                for (i = 0; i < param.WeightsCount; i++)
                {
                    int j;
                    for (j = 0; j < nr_class; j++)
                    {
                        if (param.WeightLabel[i] == label[j])
                        {
                            break;
                        }
                    }
                    if (j == nr_class)
                    {
                        System.Diagnostics.Debug.WriteLine("WARNING: class label " + param.WeightLabel[i] + " specified in weight is not found\n");
                    }
                    else
                    {
                        weighted_C[j] *= param.Weight[i];
                    }
                }

                // train k*(k-1)/2 models

                var nonzero = new bool[l];
                for (i = 0; i < l; i++)
                {
                    nonzero[i] = false;
                }
                var f = new DecisionFunction[nr_class * (nr_class - 1) / 2];

                double[] probA = null, probB = null;
                if (param.Probability)
                {
                    probA = new double[nr_class * (nr_class - 1) / 2];
                    probB = new double[nr_class * (nr_class - 1) / 2];
                }

                int p = 0;
                for (i = 0; i < nr_class; i++)
                {
                    for (int j = i + 1; j < nr_class; j++)
                    {
                        int si = start[i], sj = start[j];
                        int ci = count[i], cj = count[j];
                        var subprobLenght = ci + cj;
                        var sub_prob      = new SvmProblem
                        {
                            X = new SvmNode[subprobLenght][],
                            Y = new double[subprobLenght]
                        };

                        int k;
                        for (k = 0; k < ci; k++)
                        {
                            sub_prob.X[k] = x[si + k];
                            sub_prob.Y[k] = +1;
                        }
                        for (k = 0; k < cj; k++)
                        {
                            sub_prob.X[ci + k] = x[sj + k];
                            sub_prob.Y[ci + k] = -1;
                        }

                        if (param.Probability)
                        {
                            double[] probAB = new double[2];
                            svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
                            probA[p] = probAB[0];
                            probB[p] = probAB[1];
                        }

                        f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
                        for (k = 0; k < ci; k++)
                        {
                            if (!nonzero[si + k] && Math.Abs(f[p].Alpha[k]) > 0)
                            {
                                nonzero[si + k] = true;
                            }
                        }
                        for (k = 0; k < cj; k++)
                        {
                            if (!nonzero[sj + k] && Math.Abs(f[p].Alpha[ci + k]) > 0)
                            {
                                nonzero[sj + k] = true;
                            }
                        }
                        ++p;
                    }
                }

                // build output

                model.NrClass = nr_class;

                model.Label = new int[nr_class];
                for (i = 0; i < nr_class; i++)
                {
                    model.Label[i] = label[i];
                }

                model.Rho = new double[nr_class * (nr_class - 1) / 2];
                for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                {
                    model.Rho[i] = f[i].Rho;
                }

                if (param.Probability)
                {
                    model.ProbA = new double[nr_class * (nr_class - 1) / 2];
                    model.ProbB = new double[nr_class * (nr_class - 1) / 2];
                    for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    {
                        model.ProbA[i] = probA[i];
                        model.ProbB[i] = probB[i];
                    }
                }
                else
                {
                    model.ProbA = null;
                    model.ProbB = null;
                }

                int   nnz      = 0;
                int[] nz_count = new int[nr_class];
                model.SupportVectorsNumbers = new int[nr_class];
                for (i = 0; i < nr_class; i++)
                {
                    int nSV = 0;
                    for (int j = 0; j < count[i]; j++)
                    {
                        if (nonzero[start[i] + j])
                        {
                            ++nSV;
                            ++nnz;
                        }
                    }
                    model.SupportVectorsNumbers[i] = nSV;
                    nz_count[i] = nSV;
                }

                Svm.info("Total nSV = " + nnz + "\n");

                model.TotalSupportVectorsNumber = nnz;
                model.SupportVectors            = new SvmNode[nnz][];
                p = 0;
                for (i = 0; i < l; i++)
                {
                    if (nonzero[i])
                    {
                        model.SupportVectors[p++] = x[i];
                    }
                }

                int[] nz_start = new int[nr_class];
                nz_start[0] = 0;
                for (i = 1; i < nr_class; i++)
                {
                    nz_start[i] = nz_start[i - 1] + nz_count[i - 1];
                }

                model.SupportVectorsCoefficients = new double[nr_class - 1][];
                for (i = 0; i < nr_class - 1; i++)
                {
                    model.SupportVectorsCoefficients[i] = new double[nnz];
                }

                p = 0;
                for (i = 0; i < nr_class; i++)
                {
                    for (int j = i + 1; j < nr_class; j++)
                    {
                        // classifier (i,j): coefficients with
                        // i are in sv_coef[j-1][nz_start[i]...],
                        // j are in sv_coef[i][nz_start[j]...]

                        int si = start[i];
                        int sj = start[j];
                        int ci = count[i];
                        int cj = count[j];

                        int q = nz_start[i];
                        int k;
                        for (k = 0; k < ci; k++)
                        {
                            if (nonzero[si + k])
                            {
                                model.SupportVectorsCoefficients[j - 1][q++] = f[p].Alpha[k];
                            }
                        }
                        q = nz_start[j];
                        for (k = 0; k < cj; k++)
                        {
                            if (nonzero[sj + k])
                            {
                                model.SupportVectorsCoefficients[i][q++] = f[p].Alpha[ci + k];
                            }
                        }
                        ++p;
                    }
                }
            }
            return(model);
        }
Esempio n. 22
0
        private static void solve_nu_svr(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int l = prob.Lenght;
              double C = param.C;
              double[] alpha2 = new double[2 * l];
              double[] linear_term = new double[2 * l];
              sbyte[] y = new sbyte[2 * l];
              int i;

              double sum = C * param.Nu * l / 2;
              for (i = 0; i < l; i++)
              {
            alpha2[i] = alpha2[i + l] = Math.Min(sum, C);
            sum -= alpha2[i];

            linear_term[i] = -prob.Y[i];
            y[i] = 1;

            linear_term[i + l] = prob.Y[i];
            y[i + l] = -1;
              }

              var s = new SolverNu();
              s.Solve(2 * l, new SvrQ(prob, param), linear_term, y,
            alpha2, C, C, param.Eps, si, param.Shrinking);

              Svm.info("epsilon = " + (-si.R) + "\n");

              for (i = 0; i < l; i++)
            alpha[i] = alpha2[i] - alpha2[i + l];
        }
Esempio n. 23
0
        private static void solve_c_svc(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si, double Cp, double Cn)
        {
            int l = prob.Lenght;
              double[] minus_ones = new double[l];
              sbyte[] y = new sbyte[l];

              for (int i = 0; i < l; i++)
              {
            alpha[i] = 0;
            minus_ones[i] = -1;

            if (prob.Y[i] > 0)
            {
              y[i] = +1;
            }
            else
            {
              y[i] = -1;
            }
              }

              Solver s = new Solver();
              s.Solve(l, new SvcQ(prob, param, y), minus_ones, y,
            alpha, Cp, Cn, param.Eps, si, param.Shrinking);

              double sum_alpha = 0;
              for (int i = 0; i < l; i++)
              {
            sum_alpha += alpha[i];
              }

              if (Cp == Cn)
              {
            Svm.info("nu = " + sum_alpha / (Cp * prob.Lenght) + "\n");
              }

              for (int i = 0; i < l; i++)
              {
            alpha[i] *= y[i];
              }
        }
Esempio n. 24
0
        private static void solve_epsilon_svr(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int l = prob.Lenght;
              double[] alpha2 = new double[2 * l];
              double[] linear_term = new double[2 * l];
              sbyte[] y = new sbyte[2 * l];
              int i;

              for (i = 0; i < l; i++)
              {
            alpha2[i] = 0;
            linear_term[i] = param.P - prob.Y[i];
            y[i] = 1;

            alpha2[i + l] = 0;
            linear_term[i + l] = param.P + prob.Y[i];
            y[i + l] = -1;
              }

              Solver s = new Solver();
              s.Solve(2 * l, new SvrQ(prob, param), linear_term, y,
            alpha2, param.C, param.C, param.Eps, si, param.Shrinking);

              double sum_alpha = 0;
              for (i = 0; i < l; i++)
              {
            alpha[i] = alpha2[i] - alpha2[i + l];
            sum_alpha += Math.Abs(alpha[i]);
              }
              Svm.info("nu = " + sum_alpha / (param.C * l) + "\n");
        }
Esempio n. 25
0
        // Stratified cross validation
        public static void CrossValidation(SvmProblem prob, SvmParameter param, int nr_fold, double[] target)
        {
            int i;
              int[] fold_start = new int[nr_fold + 1];
              int l = prob.Lenght;
              int[] perm = new int[l];

              // stratified cv may not give leave-one-out rate
              // Each class to l folds -> some folds may have zero elements
              if (param.SvmType.IsSVC() && nr_fold < l)
              {
            int nr_class;
            int[] tmp_label;
            int[] start;
            int[] count;

            svm_group_classes(prob, out nr_class, out tmp_label, out start, out count, perm);

            // random shuffle and then data grouped by fold using the array perm
            int[] fold_count = new int[nr_fold];
            int c;
            int[] index = new int[l];
            for (i = 0; i < l; i++)
              index[i] = perm[i];

            var rnd = new Random();

            for (c = 0; c < nr_class; c++)
              for (i = 0; i < count[c]; i++)
              {
            int j = i + (int)(rnd.NextDouble() * (count[c] - i));
            Common.Swap(ref index[start[c] + j], ref index[start[c] + j]);
              }
            for (i = 0; i < nr_fold; i++)
            {
              fold_count[i] = 0;
              for (c = 0; c < nr_class; c++)
            fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
            }
            fold_start[0] = 0;
            for (i = 1; i <= nr_fold; i++)
              fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
            for (c = 0; c < nr_class; c++)
              for (i = 0; i < nr_fold; i++)
              {
            int begin = start[c] + i * count[c] / nr_fold;
            int end = start[c] + (i + 1) * count[c] / nr_fold;
            for (int j = begin; j < end; j++)
            {
              perm[fold_start[i]] = index[j];
              fold_start[i]++;
            }
              }
            fold_start[0] = 0;
            for (i = 1; i <= nr_fold; i++)
              fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
              }
              else
              {
            var rnd = new Random();

            for (i = 0; i < l; i++)
            {
              perm[i] = i;
            }

            for (i = 0; i < l; i++)
            {
              int j = i + (int)(rnd.NextDouble() * (l - i));
              Common.Swap(ref perm[i], ref perm[j]);
            }

            for (i = 0; i <= nr_fold; i++)
            {
              fold_start[i] = i * l / nr_fold;
            }
              }

              for (i = 0; i < nr_fold; i++)
              {
            int begin = fold_start[i];
            int end = fold_start[i + 1];
            int j, k;

            var subprobLenght = l - (end - begin);
            var subprob = new SvmProblem
            {
              X = new SvmNode[subprobLenght][],
              Y = new double[subprobLenght]
            };

            k = 0;
            for (j = 0; j < begin; j++)
            {
              subprob.X[k] = prob.X[perm[j]];
              subprob.Y[k] = prob.Y[perm[j]];
              ++k;
            }
            for (j = end; j < l; j++)
            {
              subprob.X[k] = prob.X[perm[j]];
              subprob.Y[k] = prob.Y[perm[j]];
              ++k;
            }
            var submodel = Train(subprob, param);
            if (param.Probability && param.SvmType.IsSVC())
            {
              double[] prob_estimates = new double[submodel.NrClass];
              for (j = begin; j < end; j++)
            target[perm[j]] = submodel.PredictProbability(prob.X[perm[j]], prob_estimates);
            }
            else
              for (j = begin; j < end; j++)
            target[perm[j]] = submodel.Predict(prob.X[perm[j]]);
              }
        }
Esempio n. 26
0
        //
        // Interface functions
        //
        public static SvmModel Train(SvmProblem prob, SvmParameter param)
        {
            var model = new SvmModel();
              model.Param = param;

              if (param.SvmType.IsSVROrOneClass())
              {
            // regression or one-class-svm
            model.NrClass = 2;
            model.Label = null;
            model.SupportVectorsNumbers = null;
            model.ProbA = null; model.ProbB = null;
            model.SupportVectorsCoefficients = new double[1][];

            if (param.Probability && param.SvmType.IsSVR())
            {
              model.ProbA = new double[1];
              model.ProbA[0] = svm_svr_probability(prob, param);
            }

            DecisionFunction f = svm_train_one(prob, param, 0, 0);
            model.Rho = new double[1];
            model.Rho[0] = f.Rho;

            int nSV = 0;
            int i;
            for (i = 0; i < prob.Lenght; i++)
              if (Math.Abs(f.Alpha[i]) > 0) ++nSV;
            model.TotalSupportVectorsNumber = nSV;
            model.SupportVectors = new SvmNode[nSV][];
            model.SupportVectorsCoefficients[0] = new double[nSV];
            int j = 0;
            for (i = 0; i < prob.Lenght; i++)
              if (Math.Abs(f.Alpha[i]) > 0)
              {
            model.SupportVectors[j] = prob.X[i];
            model.SupportVectorsCoefficients[0][j] = f.Alpha[i];
            ++j;
              }
              }
              else
              {
            // classification
            int l = prob.Lenght;
            int[] perm = new int[l];

            int nr_class;
            int[] label;
            int[] start;
            int[] count;

            // group training data of the same class
            svm_group_classes(prob, out nr_class, out label, out start, out count, perm);

            SvmNode[][] x = new SvmNode[l][];
            int i;
            for (i = 0; i < l; i++)
              x[i] = prob.X[perm[i]];

            // calculate weighted C

            double[] weighted_C = new double[nr_class];
            for (i = 0; i < nr_class; i++)
              weighted_C[i] = param.C;
            for (i = 0; i < param.WeightsCount; i++)
            {
              int j;
              for (j = 0; j < nr_class; j++)
            if (param.WeightLabel[i] == label[j])
              break;
              if (j == nr_class)
            Console.Error.WriteLine("warning: class label " + param.WeightLabel[i] + " specified in weight is not found\n");
              else
            weighted_C[j] *= param.Weight[i];
            }

            // train k*(k-1)/2 models

            var nonzero = new bool[l];
            for (i = 0; i < l; i++)
              nonzero[i] = false;
            var f = new DecisionFunction[nr_class * (nr_class - 1) / 2];

            double[] probA = null, probB = null;
            if (param.Probability)
            {
              probA = new double[nr_class * (nr_class - 1) / 2];
              probB = new double[nr_class * (nr_class - 1) / 2];
            }

            int p = 0;
            for (i = 0; i < nr_class; i++)
              for (int j = i + 1; j < nr_class; j++)
              {

            int si = start[i], sj = start[j];
            int ci = count[i], cj = count[j];
            var subprobLenght = ci + cj;
            var sub_prob = new SvmProblem
            {
              X = new SvmNode[subprobLenght][],
              Y = new double[subprobLenght]
            };

            int k;
            for (k = 0; k < ci; k++)
            {
              sub_prob.X[k] = x[si + k];
              sub_prob.Y[k] = +1;
            }
            for (k = 0; k < cj; k++)
            {
              sub_prob.X[ci + k] = x[sj + k];
              sub_prob.Y[ci + k] = -1;
            }

            if (param.Probability)
            {
              double[] probAB = new double[2];
              svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
              probA[p] = probAB[0];
              probB[p] = probAB[1];
            }

            f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
            for (k = 0; k < ci; k++)
              if (!nonzero[si + k] && Math.Abs(f[p].Alpha[k]) > 0)
                nonzero[si + k] = true;
            for (k = 0; k < cj; k++)
              if (!nonzero[sj + k] && Math.Abs(f[p].Alpha[ci + k]) > 0)
                nonzero[sj + k] = true;
            ++p;
              }

            // build output

            model.NrClass = nr_class;

            model.Label = new int[nr_class];
            for (i = 0; i < nr_class; i++)
              model.Label[i] = label[i];

            model.Rho = new double[nr_class * (nr_class - 1) / 2];
            for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
              model.Rho[i] = f[i].Rho;

            if (param.Probability)
            {
              model.ProbA = new double[nr_class * (nr_class - 1) / 2];
              model.ProbB = new double[nr_class * (nr_class - 1) / 2];
              for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
              {
            model.ProbA[i] = probA[i];
            model.ProbB[i] = probB[i];
              }
            }
            else
            {
              model.ProbA = null;
              model.ProbB = null;
            }

            int nnz = 0;
            int[] nz_count = new int[nr_class];
            model.SupportVectorsNumbers = new int[nr_class];
            for (i = 0; i < nr_class; i++)
            {
              int nSV = 0;
              for (int j = 0; j < count[i]; j++)
            if (nonzero[start[i] + j])
            {
              ++nSV;
              ++nnz;
            }
              model.SupportVectorsNumbers[i] = nSV;
              nz_count[i] = nSV;
            }

            Svm.info("Total nSV = " + nnz + "\n");

            model.TotalSupportVectorsNumber = nnz;
            model.SupportVectors = new SvmNode[nnz][];
            p = 0;
            for (i = 0; i < l; i++)
              if (nonzero[i]) model.SupportVectors[p++] = x[i];

            int[] nz_start = new int[nr_class];
            nz_start[0] = 0;
            for (i = 1; i < nr_class; i++)
              nz_start[i] = nz_start[i - 1] + nz_count[i - 1];

            model.SupportVectorsCoefficients = new double[nr_class - 1][];
            for (i = 0; i < nr_class - 1; i++)
              model.SupportVectorsCoefficients[i] = new double[nnz];

            p = 0;
            for (i = 0; i < nr_class; i++)
              for (int j = i + 1; j < nr_class; j++)
              {
            // classifier (i,j): coefficients with
            // i are in sv_coef[j-1][nz_start[i]...],
            // j are in sv_coef[i][nz_start[j]...]

            int si = start[i];
            int sj = start[j];
            int ci = count[i];
            int cj = count[j];

            int q = nz_start[i];
            int k;
            for (k = 0; k < ci; k++)
              if (nonzero[si + k])
                model.SupportVectorsCoefficients[j - 1][q++] = f[p].Alpha[k];
            q = nz_start[j];
            for (k = 0; k < cj; k++)
              if (nonzero[sj + k])
                model.SupportVectorsCoefficients[i][q++] = f[p].Alpha[ci + k];
            ++p;
              }
              }
              return model;
        }
Esempio n. 27
0
        private static DecisionFunction svm_train_one(SvmProblem prob, SvmParameter param, double Cp, double Cn)
        {
            double[] alpha = new double[prob.Lenght];
              var si = new SolutionInfo();
              switch (param.SvmType)
              {
            case SvmType.C_SVC:
              solve_c_svc(prob, param, alpha, si, Cp, Cn);
              break;
            case SvmType.NU_SVC:
              solve_nu_svc(prob, param, alpha, si);
              break;
            case SvmType.ONE_CLASS:
              solve_one_class(prob, param, alpha, si);
              break;
            case SvmType.EPSILON_SVR:
              solve_epsilon_svr(prob, param, alpha, si);
              break;
            case SvmType.NU_SVR:
              solve_nu_svr(prob, param, alpha, si);
              break;
              }

              Svm.info("obj = " + si.Obj + ", rho = " + si.Rho + "\n");

              // output SVs

              int nSV = 0;
              int nBSV = 0;
              for (int i = 0; i < prob.Lenght; i++)
              {
            if (Math.Abs(alpha[i]) > 0)
            {
              ++nSV;
              if (prob.Y[i] > 0)
              {
            if (Math.Abs(alpha[i]) >= si.UpperBoundP)
              ++nBSV;
              }
              else
              {
            if (Math.Abs(alpha[i]) >= si.UpperBoundN)
              ++nBSV;
              }
            }
              }

              Svm.info("nSV = " + nSV + ", nBSV = " + nBSV + "\n");

              var f = new DecisionFunction(alpha, si.Rho);
              return f;
        }
Esempio n. 28
0
        // Return parameter of a Laplace distribution
        private static double svm_svr_probability(SvmProblem prob, SvmParameter param)
        {
            int i;
              int nr_fold = 5;
              double[] ymv = new double[prob.Lenght];
              double mae = 0;

              var newparam = (SvmParameter)param.Clone();
              newparam.Probability = false;
              CrossValidation(prob, newparam, nr_fold, ymv);
              for (i = 0; i < prob.Lenght; i++)
              {
            ymv[i] = prob.Y[i] - ymv[i];
            mae += Math.Abs(ymv[i]);
              }
              mae /= prob.Lenght;
              double std = Math.Sqrt(2 * mae * mae);
              int count = 0;
              mae = 0;
              for (i = 0; i < prob.Lenght; i++)
            if (Math.Abs(ymv[i]) > 5 * std)
              count = count + 1;
            else
              mae += Math.Abs(ymv[i]);
              mae /= (prob.Lenght - count);
              Svm.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\n");
              return mae;
        }
Esempio n. 29
0
        private static void solve_nu_svc(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int    i;
            int    l  = prob.Lenght;
            double nu = param.Nu;

            sbyte[] y = new sbyte[l];

            for (i = 0; i < l; i++)
            {
                if (prob.Y[i] > 0)
                {
                    y[i] = +1;
                }
                else
                {
                    y[i] = -1;
                }
            }

            double sum_pos = nu * l / 2;
            double sum_neg = nu * l / 2;

            for (i = 0; i < l; i++)
            {
                if (y[i] == +1)
                {
                    alpha[i] = Math.Min(1.0, sum_pos);
                    sum_pos -= alpha[i];
                }
                else
                {
                    alpha[i] = Math.Min(1.0, sum_neg);
                    sum_neg -= alpha[i];
                }
            }

            double[] zeros = new double[l];

            for (i = 0; i < l; i++)
            {
                zeros[i] = 0;
            }

            var s = new SolverNu();

            s.Solve(l, new SvcQ(prob, param, y), zeros, y,
                    alpha, 1.0, 1.0, param.Eps, si, param.Shrinking);
            double r = si.R;

            Svm.info("C = " + 1 / r + "\n");

            for (i = 0; i < l; i++)
            {
                alpha[i] *= y[i] / r;
            }

            si.Rho        /= r;
            si.Obj        /= (r * r);
            si.UpperBoundP = 1 / r;
            si.UpperBoundN = 1 / r;
        }
Esempio n. 30
0
        private static DecisionFunction svm_train_one(SvmProblem prob, SvmParameter param, double Cp, double Cn)
        {
            double[] alpha = new double[prob.Lenght];
            var      si    = new SolutionInfo();

            switch (param.SvmType)
            {
            case SvmType.C_SVC:
                solve_c_svc(prob, param, alpha, si, Cp, Cn);
                break;

            case SvmType.NU_SVC:
                solve_nu_svc(prob, param, alpha, si);
                break;

            case SvmType.ONE_CLASS:
                solve_one_class(prob, param, alpha, si);
                break;

            case SvmType.EPSILON_SVR:
                solve_epsilon_svr(prob, param, alpha, si);
                break;

            case SvmType.NU_SVR:
                solve_nu_svr(prob, param, alpha, si);
                break;
            }

            Svm.info("obj = " + si.Obj + ", rho = " + si.Rho + "\n");

            // output SVs

            int nSV  = 0;
            int nBSV = 0;

            for (int i = 0; i < prob.Lenght; i++)
            {
                if (Math.Abs(alpha[i]) > 0)
                {
                    ++nSV;
                    if (prob.Y[i] > 0)
                    {
                        if (Math.Abs(alpha[i]) >= si.UpperBoundP)
                        {
                            ++nBSV;
                        }
                    }
                    else
                    {
                        if (Math.Abs(alpha[i]) >= si.UpperBoundN)
                        {
                            ++nBSV;
                        }
                    }
                }
            }

            Svm.info("nSV = " + nSV + ", nBSV = " + nBSV + "\n");

            var f = new DecisionFunction(alpha, si.Rho);

            return(f);
        }
Esempio n. 31
0
        private static void solve_nu_svc(SvmProblem prob, SvmParameter param, double[] alpha, SolutionInfo si)
        {
            int i;
              int l = prob.Lenght;
              double nu = param.Nu;

              sbyte[] y = new sbyte[l];

              for (i = 0; i < l; i++)
            if (prob.Y[i] > 0)
              y[i] = +1;
            else
              y[i] = -1;

              double sum_pos = nu * l / 2;
              double sum_neg = nu * l / 2;

              for (i = 0; i < l; i++)
            if (y[i] == +1)
            {
              alpha[i] = Math.Min(1.0, sum_pos);
              sum_pos -= alpha[i];
            }
            else
            {
              alpha[i] = Math.Min(1.0, sum_neg);
              sum_neg -= alpha[i];
            }

              double[] zeros = new double[l];

              for (i = 0; i < l; i++)
            zeros[i] = 0;

              var s = new SolverNu();
              s.Solve(l, new SvcQ(prob, param, y), zeros, y,
            alpha, 1.0, 1.0, param.Eps, si, param.Shrinking);
              double r = si.R;

              Svm.info("C = " + 1 / r + "\n");

              for (i = 0; i < l; i++)
            alpha[i] *= y[i] / r;

              si.Rho /= r;
              si.Obj /= (r * r);
              si.UpperBoundP = 1 / r;
              si.UpperBoundN = 1 / r;
        }
Esempio n. 32
0
 protected SvmModel TrainSvmModel(SvmProblem problem)
 {
     _parameters.Check(problem);
       var model = LibSvm.Svm.Train(problem, _parameters);
       return model;
 }
Esempio n. 33
0
        // check whether nu-svc is feasible
        private void IsNuFeasible(SvmProblem prob)
        {
            if (!SvmType.IsNuSVC())
              {
            return;
              }

              int l = prob.Lenght;
              int max_nr_class = 16;
              int nr_class = 0;
              int[] label = new int[max_nr_class];
              int[] count = new int[max_nr_class];

              int i;
              for (i = 0; i < l; i++)
              {
            int this_label = (int) prob.Y[i];
            int j;
            for (j = 0; j < nr_class; j++)
              if (this_label == label[j])
              {
            ++count[j];
            break;
              }

            if (j == nr_class)
            {
              if (nr_class == max_nr_class)
              {
            max_nr_class *= 2;
            int[] new_data = new int[max_nr_class];
            Array.Copy(label, 0, new_data, 0, label.Length);
            label = new_data;

            new_data = new int[max_nr_class];
            Array.Copy(count, 0, new_data, 0, count.Length);
            count = new_data;
              }
              label[nr_class] = this_label;
              count[nr_class] = 1;
              ++nr_class;
            }
              }

              for (i = 0; i < nr_class; i++)
              {
            int n1 = count[i];
            for (int j = i + 1; j < nr_class; j++)
            {
              int n2 = count[j];
              if (this.Nu*(n1 + n2)/2 > Math.Min(n1, n2))
            throw new ApplicationException("specified nu is infeasible");
            }
              }
        }
Esempio n. 34
0
        // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
        // perm, length l, must be allocated before calling this subroutine
        private static void svm_group_classes(SvmProblem prob, out int nr_class_ret, out int[] label_ret, out int[] start_ret, out int[] count_ret, int[] perm)
        {
            int l = prob.Lenght;
              int max_nr_class = 16;
              int nr_class = 0;
              int[] label = new int[max_nr_class];
              int[] count = new int[max_nr_class];
              int[] data_label = new int[l];
              int i;

              for (i = 0; i < l; i++)
              {
            int this_label = (int)(prob.Y[i]);
            int j;
            for (j = 0; j < nr_class; j++)
            {
              if (this_label == label[j])
              {
            ++count[j];
            break;
              }
            }
            data_label[i] = j;
            if (j == nr_class)
            {
              if (nr_class == max_nr_class)
              {
            max_nr_class *= 2;
            int[] new_data = new int[max_nr_class];
            Array.Copy(label, 0, new_data, 0, label.Length);
            label = new_data;
            new_data = new int[max_nr_class];
            Array.Copy(count, 0, new_data, 0, count.Length);

            count = new_data;
              }
              label[nr_class] = this_label;
              count[nr_class] = 1;
              ++nr_class;
            }
              }

              int[] start = new int[nr_class];
              start[0] = 0;
              for (i = 1; i < nr_class; i++)
            start[i] = start[i - 1] + count[i - 1];
              for (i = 0; i < l; i++)
              {
            perm[start[data_label[i]]] = i;
            ++start[data_label[i]];
              }
              start[0] = 0;
              for (i = 1; i < nr_class; i++)
            start[i] = start[i - 1] + count[i - 1];

              nr_class_ret = nr_class;
              label_ret = label;
              start_ret = start;
              count_ret = count;
        }
Esempio n. 35
0
        // Stratified cross validation
        public static void CrossValidation(SvmProblem prob, SvmParameter param, int nr_fold, double[] target)
        {
            int i;

            int[] fold_start = new int[nr_fold + 1];
            int   l          = prob.Lenght;

            int[] perm = new int[l];

            // stratified cv may not give leave-one-out rate
            // Each class to l folds -> some folds may have zero elements
            if (param.SvmType.IsSVC() && nr_fold < l)
            {
                int   nr_class;
                int[] tmp_label;
                int[] start;
                int[] count;

                svm_group_classes(prob, out nr_class, out tmp_label, out start, out count, perm);

                // random shuffle and then data grouped by fold using the array perm
                int[] fold_count = new int[nr_fold];
                int   c;
                int[] index = new int[l];
                for (i = 0; i < l; i++)
                {
                    index[i] = perm[i];
                }

                var rnd = new Random();

                for (c = 0; c < nr_class; c++)
                {
                    for (i = 0; i < count[c]; i++)
                    {
                        int j = i + (int)(rnd.NextDouble() * (count[c] - i));
                        Common.Swap(ref index[start[c] + j], ref index[start[c] + j]);
                    }
                }
                for (i = 0; i < nr_fold; i++)
                {
                    fold_count[i] = 0;
                    for (c = 0; c < nr_class; c++)
                    {
                        fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
                    }
                }
                fold_start[0] = 0;
                for (i = 1; i <= nr_fold; i++)
                {
                    fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
                }
                for (c = 0; c < nr_class; c++)
                {
                    for (i = 0; i < nr_fold; i++)
                    {
                        int begin = start[c] + i * count[c] / nr_fold;
                        int end   = start[c] + (i + 1) * count[c] / nr_fold;
                        for (int j = begin; j < end; j++)
                        {
                            perm[fold_start[i]] = index[j];
                            fold_start[i]++;
                        }
                    }
                }
                fold_start[0] = 0;
                for (i = 1; i <= nr_fold; i++)
                {
                    fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
                }
            }
            else
            {
                var rnd = new Random();

                for (i = 0; i < l; i++)
                {
                    perm[i] = i;
                }

                for (i = 0; i < l; i++)
                {
                    int j = i + (int)(rnd.NextDouble() * (l - i));
                    Common.Swap(ref perm[i], ref perm[j]);
                }

                for (i = 0; i <= nr_fold; i++)
                {
                    fold_start[i] = i * l / nr_fold;
                }
            }

            for (i = 0; i < nr_fold; i++)
            {
                int begin = fold_start[i];
                int end = fold_start[i + 1];
                int j, k;

                var subprobLenght = l - (end - begin);
                var subprob       = new SvmProblem
                {
                    X = new SvmNode[subprobLenght][],
                    Y = new double[subprobLenght]
                };

                k = 0;
                for (j = 0; j < begin; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }
                for (j = end; j < l; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }
                var submodel = Train(subprob, param);
                if (param.Probability && param.SvmType.IsSVC())
                {
                    double[] prob_estimates = new double[submodel.NrClass];
                    for (j = begin; j < end; j++)
                    {
                        target[perm[j]] = submodel.PredictProbability(prob.X[perm[j]], prob_estimates);
                    }
                }
                else
                {
                    for (j = begin; j < end; j++)
                    {
                        target[perm[j]] = submodel.Predict(prob.X[perm[j]]);
                    }
                }
            }
        }