protected void reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if (_activeSize == _length) { return; } int i, j; int nr_free = 0; for (j = _activeSize; j < _length; j++) { _g[j] = _gBar[j] + _p[j]; } for (j = 0; j < _activeSize; j++) { if (is_free(j)) { nr_free++; } } if (2 * nr_free < _activeSize) { Svm.info("\nWARNING: using -h 0 may be faster\n"); } if (nr_free * _length > 2 * _activeSize * (_length - _activeSize)) { for (i = _activeSize; i < _length; i++) { double[] Q_i = _q.GetQ(i, _activeSize); for (j = 0; j < _activeSize; j++) { if (is_free(j)) { _g[i] += _alpha[j] * Q_i[j]; } } } } else { for (i = 0; i < _activeSize; i++) { if (is_free(i)) { double[] Q_i = _q.GetQ(i, _length); double alpha_i = _alpha[i]; for (j = _activeSize; j < _length; j++) { _g[j] += alpha_i * Q_i[j]; } } } } }
public virtual void Solve(int length, QMatrix Q, double[] p_, sbyte[] y_, double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, bool shrinking) { _length = length; _q = Q; _qd = Q.GetQD(); _p = (double[]) p_.Clone(); _y = (sbyte[]) y_.Clone(); _alpha = (double[]) alpha_.Clone(); _cp = Cp; _cn = Cn; _eps = eps; _unshrink = false; // initialize alpha_status _alphaStatus = new BoundType[length]; for (int i = 0; i < length; i++) { UpdateAlphaStatus(i); } // initialize active set (for shrinking) _activeSet = new int[length]; for (int i = 0; i < length; i++) { _activeSet[i] = i; } _activeSize = length; // initialize gradient _g = new double[length]; _gBar = new double[length]; for (int i = 0; i < length; i++) { _g[i] = _p[i]; _gBar[i] = 0; } for (int i = 0; i < length; i++) { if (!IsLowerBound(i)) { double[] Q_i = Q.GetQ(i, length); double alpha_i = _alpha[i]; for (int j = 0; j < length; j++) { _g[j] += alpha_i * Q_i[j]; } if (IsUpperBound(i)) { for (int j = 0; j < length; j++) { _gBar[j] += GetC(i) * Q_i[j]; } } } } // optimization step int iter = 0; int max_iter = Math.Max(10000000, length > int.MaxValue / 100 ? int.MaxValue : 100 * length); int counter = Math.Min(length, 1000) + 1; int[] working_set = new int[2]; while (iter < max_iter) { // show progress and do shrinking if (--counter == 0) { counter = Math.Min(length, 1000); if (shrinking) DoShrinking(); Svm.info("."); } if (SelectWorkingSet(working_set) != 0) { // reconstruct the whole gradient ReconstructGradient(); // reset active set size and check _activeSize = length; Svm.info("*"); if (SelectWorkingSet(working_set) != 0) break; else counter = 1; // do shrinking next iteration } int i = working_set[0]; int j = working_set[1]; ++iter; // update alpha[i] and alpha[j], handle bounds carefully double[] Q_i = Q.GetQ(i, _activeSize); double[] Q_j = Q.GetQ(j, _activeSize); double C_i = GetC(i); double C_j = GetC(j); double old_alpha_i = _alpha[i]; double old_alpha_j = _alpha[j]; if (_y[i] != _y[j]) { double quad_coef = _qd[i] + _qd[j] + 2*Q_i[j]; if (quad_coef <= 0) quad_coef = 1e-12; double delta = (-_g[i] - _g[j])/quad_coef; double diff = _alpha[i] - _alpha[j]; _alpha[i] += delta; _alpha[j] += delta; if (diff > 0) { if (_alpha[j] < 0) { _alpha[j] = 0; _alpha[i] = diff; } } else { if (_alpha[i] < 0) { _alpha[i] = 0; _alpha[j] = -diff; } } if (diff > C_i - C_j) { if (_alpha[i] > C_i) { _alpha[i] = C_i; _alpha[j] = C_i - diff; } } else { if (_alpha[j] > C_j) { _alpha[j] = C_j; _alpha[i] = C_j + diff; } } } else { double quad_coef = _qd[i] + _qd[j] - 2*Q_i[j]; if (quad_coef <= 0) quad_coef = 1e-12; double delta = (_g[i] - _g[j])/quad_coef; double sum = _alpha[i] + _alpha[j]; _alpha[i] -= delta; _alpha[j] += delta; if (sum > C_i) { if (_alpha[i] > C_i) { _alpha[i] = C_i; _alpha[j] = sum - C_i; } } else { if (_alpha[j] < 0) { _alpha[j] = 0; _alpha[i] = sum; } } if (sum > C_j) { if (_alpha[j] > C_j) { _alpha[j] = C_j; _alpha[i] = sum - C_j; } } else { if (_alpha[i] < 0) { _alpha[i] = 0; _alpha[j] = sum; } } } // update G double delta_alpha_i = _alpha[i] - old_alpha_i; double delta_alpha_j = _alpha[j] - old_alpha_j; for (int k = 0; k < _activeSize; k++) { _g[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; } // update alpha_status and G_bar bool ui = IsUpperBound(i); bool uj = IsUpperBound(j); UpdateAlphaStatus(i); UpdateAlphaStatus(j); //int k; if (ui != IsUpperBound(i)) { Q_i = Q.GetQ(i, length); if (ui) { for (int k = 0; k < length; k++) { _gBar[k] -= C_i*Q_i[k]; } } else { for (int k = 0; k < length; k++) { _gBar[k] += C_i*Q_i[k]; } } } if (uj != IsUpperBound(j)) { Q_j = Q.GetQ(j, length); if (uj) { for (int k = 0; k < length; k++) { _gBar[k] -= C_j*Q_j[k]; } } else { for (int k = 0; k < length; k++) { _gBar[k] += C_j*Q_j[k]; } } } } if (iter >= max_iter) { if (_activeSize < length) { // reconstruct the whole gradient to calculate objective value ReconstructGradient(); _activeSize = length; Svm.info("*"); } Console.Error.WriteLine("\nWARNING: reaching max number of iterations"); } // calculate rho si.Rho = CalculateRho(); // calculate objective value double v = 0; for (int i = 0; i < length; i++) { v += _alpha[i]*(_g[i] + _p[i]); } si.Obj = v/2; // put back the solution for (int i = 0; i < length; i++) { alpha_[_activeSet[i]] = _alpha[i]; } si.UpperBoundP = Cp; si.UpperBoundN = Cn; Svm.info("\noptimization finished, #iter = " + iter + "\n"); }
public virtual void Solve(int length, QMatrix Q, double[] p_, sbyte[] y_, double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, bool shrinking) { this._length = length; this._q = Q; _qd = Q.GetQD(); _p = (double[])p_.Clone(); _y = (sbyte[])y_.Clone(); _alpha = (double[])alpha_.Clone(); this._cp = Cp; this._cn = Cn; this._eps = eps; this._unshrink = false; // initialize alpha_status { _alphaStatus = new BoundType[length]; for (int i = 0; i < length; i++) { UpdateAlphaStatus(i); } } // initialize active set (for shrinking) { _activeSet = new int[length]; for (int i = 0; i < length; i++) { _activeSet[i] = i; } _activeSize = length; } // initialize gradient { _g = new double[length]; _gBar = new double[length]; int i; for (i = 0; i < length; i++) { _g[i] = _p[i]; _gBar[i] = 0; } for (i = 0; i < length; i++) { if (!is_lower_bound(i)) { double[] Q_i = Q.GetQ(i, length); double alpha_i = _alpha[i]; int j; for (j = 0; j < length; j++) { _g[j] += alpha_i * Q_i[j]; } if (is_upper_bound(i)) { for (j = 0; j < length; j++) { _gBar[j] += GetC(i) * Q_i[j]; } } } } } // optimization step int iter = 0; int max_iter = Math.Max(10000000, length > int.MaxValue / 100 ? int.MaxValue : 100 * length); int counter = Math.Min(length, 1000) + 1; int[] working_set = new int[2]; while (iter < max_iter) { // show progress and do shrinking if (--counter == 0) { counter = Math.Min(length, 1000); if (shrinking) { do_shrinking(); } Svm.info("."); } if (select_working_set(working_set) != 0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check _activeSize = length; Svm.info("*"); if (select_working_set(working_set) != 0) { break; } else { counter = 1; // do shrinking next iteration } } int i = working_set[0]; int j = working_set[1]; ++iter; // update alpha[i] and alpha[j], handle bounds carefully double[] Q_i = Q.GetQ(i, _activeSize); double[] Q_j = Q.GetQ(j, _activeSize); double C_i = GetC(i); double C_j = GetC(j); double old_alpha_i = _alpha[i]; double old_alpha_j = _alpha[j]; if (_y[i] != _y[j]) { double quad_coef = _qd[i] + _qd[j] + 2 * Q_i[j]; if (quad_coef <= 0) { quad_coef = 1e-12; } double delta = (-_g[i] - _g[j]) / quad_coef; double diff = _alpha[i] - _alpha[j]; _alpha[i] += delta; _alpha[j] += delta; if (diff > 0) { if (_alpha[j] < 0) { _alpha[j] = 0; _alpha[i] = diff; } } else { if (_alpha[i] < 0) { _alpha[i] = 0; _alpha[j] = -diff; } } if (diff > C_i - C_j) { if (_alpha[i] > C_i) { _alpha[i] = C_i; _alpha[j] = C_i - diff; } } else { if (_alpha[j] > C_j) { _alpha[j] = C_j; _alpha[i] = C_j + diff; } } } else { double quad_coef = _qd[i] + _qd[j] - 2 * Q_i[j]; if (quad_coef <= 0) { quad_coef = 1e-12; } double delta = (_g[i] - _g[j]) / quad_coef; double sum = _alpha[i] + _alpha[j]; _alpha[i] -= delta; _alpha[j] += delta; if (sum > C_i) { if (_alpha[i] > C_i) { _alpha[i] = C_i; _alpha[j] = sum - C_i; } } else { if (_alpha[j] < 0) { _alpha[j] = 0; _alpha[i] = sum; } } if (sum > C_j) { if (_alpha[j] > C_j) { _alpha[j] = C_j; _alpha[i] = sum - C_j; } } else { if (_alpha[i] < 0) { _alpha[i] = 0; _alpha[j] = sum; } } } // update G double delta_alpha_i = _alpha[i] - old_alpha_i; double delta_alpha_j = _alpha[j] - old_alpha_j; for (int k = 0; k < _activeSize; k++) { _g[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j; } // update alpha_status and G_bar bool ui = is_upper_bound(i); bool uj = is_upper_bound(j); UpdateAlphaStatus(i); UpdateAlphaStatus(j); //int k; if (ui != is_upper_bound(i)) { Q_i = Q.GetQ(i, length); if (ui) { for (int k = 0; k < length; k++) { _gBar[k] -= C_i * Q_i[k]; } } else { for (int k = 0; k < length; k++) { _gBar[k] += C_i * Q_i[k]; } } } if (uj != is_upper_bound(j)) { Q_j = Q.GetQ(j, length); if (uj) { for (int k = 0; k < length; k++) { _gBar[k] -= C_j * Q_j[k]; } } else { for (int k = 0; k < length; k++) { _gBar[k] += C_j * Q_j[k]; } } } } if (iter >= max_iter) { if (_activeSize < length) { // reconstruct the whole gradient to calculate objective value reconstruct_gradient(); _activeSize = length; Svm.info("*"); } Svm.info("\nWARNING: reaching max number of iterations"); } // calculate rho si.Rho = calculate_rho(); // calculate objective value double v = 0; for (int i = 0; i < length; i++) { v += _alpha[i] * (_g[i] + _p[i]); } si.Obj = v / 2; // put back the solution for (int i = 0; i < length; i++) { alpha_[_activeSet[i]] = _alpha[i]; } si.UpperBoundP = Cp; si.UpperBoundN = Cn; Svm.info("\noptimization finished, #iter = " + iter + "\n"); }