public ClusterFit(ColourSet colours, SquishFlags flags, float?metric) : base(colours, flags) { // set the iteration count _mIterationCount = (MFlags & SquishFlags.KColourIterativeClusterFit) != 0 ? 8 : 1; // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f) if (metric != null) { //m_metric = Vec4( metric[0], metric[1], metric[2], 1.0f ); } else { _mMetric = new Vector4(1.0f); } // initialise the best error _mBesterror = new Vector4(float.MaxValue); // cache some values var count = MColours.Count; var values = MColours.Points; // get the covariance matrix var covariance = Sym3X3.ComputeWeightedCovariance(count, values, MColours.Weights); // compute the principle component _mPrinciple = Sym3X3.ComputePrincipleComponent(covariance); }
public SingleColourFit(ColourSet colours, SquishFlags flags) : base(colours, flags) { // grab the single colour var values = MColours.Points; _mColour[0] = (byte)ColourBlock.FloatToInt(255.0f * values[0].X, 255); _mColour[1] = (byte)ColourBlock.FloatToInt(255.0f * values[0].Y, 255); _mColour[2] = (byte)ColourBlock.FloatToInt(255.0f * values[0].Z, 255); // initialise the best error _mBesterror = int.MaxValue; }
private static void CompressMasked(byte[] rgba, int mask, ref byte[] block, int offset, SquishFlags flags, float?metric) { // fix any bad flags flags = FixFlags(flags); // get the block locations var colourBlock = offset; var alphaBlock = offset; if ((flags & (SquishFlags.KDxt3 | SquishFlags.KDxt5)) != 0) { colourBlock += 8; } // create the minimal point set var colours = new ColourSet(rgba, mask, flags); // check the compression type and compress colour if (colours.Count == 1) { // always do a single colour fit var fit = new SingleColourFit(colours, flags); fit.Compress(ref block, colourBlock); } else if ((flags & SquishFlags.KColourRangeFit) != 0 || colours.Count == 0) { // do a range fit var fit = new RangeFit(colours, flags, metric); fit.Compress(ref block, colourBlock); } else { // default to a cluster fit (could be iterative or not) var fit = new ClusterFit(colours, flags, metric); fit.Compress(ref block, colourBlock); } // compress alpha separately if necessary if ((flags & SquishFlags.KDxt3) != 0) { CompressAlphaDxt3(rgba, mask, ref block, alphaBlock); } else if ((flags & SquishFlags.KDxt5) != 0) { CompressAlphaDxt5(rgba, mask, ref block, alphaBlock); } }
public RangeFit(ColourSet colours, SquishFlags flags, float?metric) : base(colours, flags) { // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f) if (metric != null) { //m_metric = new Vector3( metric[0], metric[1], metric[2] ); } else { _mMetric = new Vector3(1.0f); } // initialise the best error _mBesterror = float.MaxValue; // cache some values var count = MColours.Count; var values = MColours.Points; var weights = MColours.Weights; // get the covariance matrix var covariance = Sym3X3.ComputeWeightedCovariance(count, values, weights); // compute the principle component var principle = Sym3X3.ComputePrincipleComponent(covariance); // get the min and max range as the codebook endpoints var start = new Vector3(0.0f); var end = new Vector3(0.0f); if (count > 0) { float max; // compute the range start = end = values[0]; var min = max = Vector3.Dot(values[0], principle); for (var i = 1; i < count; ++i) { var val = Vector3.Dot(values[i], principle); if (val < min) { start = values[i]; min = val; } else if (val > max) { end = values[i]; max = val; } } } // clamp the output to [0, 1] var one = new Vector3(1.0f); var zero = new Vector3(0.0f); start = Vector3.Min(one, Vector3.Max(zero, start)); end = Vector3.Min(one, Vector3.Max(zero, end)); // clamp to the grid and save var grid = new Vector3(31.0f, 63.0f, 31.0f); var gridrcp = new Vector3(1.0f / 31.0f, 1.0f / 63.0f, 1.0f / 31.0f); var half = new Vector3(0.5f); _mStart = Helpers.Truncate(grid * start + half) * gridrcp; _mEnd = Helpers.Truncate(grid * end + half) * gridrcp; }