// rotate the points by the given radians about their centroid public static ArrayList RotateByRadians(ArrayList points, double radians) { ArrayList newPoints = new ArrayList(points.Count); PointR c = Centroid(points); double cos = Math.Cos(radians); double sin = Math.Sin(radians); double cx = c.X; double cy = c.Y; for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; double dx = p.X - cx; double dy = p.Y - cy; PointR q = PointR.Empty; q.X = dx * cos - dy * sin + cx; q.Y = dx * sin + dy * cos + cy; newPoints.Add(q); } return(newPoints); }
public static double Distance(PointR p1, PointR p2) { double dx = p2.X - p1.X; double dy = p2.Y - p1.Y; return(Math.Sqrt(dx * dx + dy * dy)); }
// determines the angle, in radians, between two points. the angle is defined // by the circle centered on the start point with a radius to the end point, // where 0 radians is straight right from start (+x-axis) and PI/2 radians is // straight down (+y-axis). public static double AngleInRadians(PointR start, PointR end, bool positiveOnly) { double radians = 0.0; if (start.X != end.X) { radians = Math.Atan2(end.Y - start.Y, end.X - start.X); } else // pure vertical movement { if (end.Y < start.Y) { radians = -Math.PI / 2.0; // -90 degrees is straight up } else if (end.Y > start.Y) { radians = Math.PI / 2.0; // 90 degrees is straight down } } if (positiveOnly && radians < 0.0) { radians += Math.PI * 2.0; } return(radians); }
// Rotate a point 'p' around a point 'c' by the given radians. // Rotation (around the origin) amounts to a 2x2 matrix of the form: // // [ cos A -sin A ] [ p.x ] // [ sin A cos A ] [ p.y ] // // Note that the C# Math coordinate system has +x-axis stright right and // +y-axis straight down. Rotation is clockwise such that from +x-axis to // +y-axis is +90 degrees, from +x-axis to -x-axis is +180 degrees, and // from +x-axis to -y-axis is -90 degrees. public static PointR RotatePoint(PointR p, PointR c, double radians) { PointR q = PointR.Empty; q.X = (p.X - c.X) * Math.Cos(radians) - (p.Y - c.Y) * Math.Sin(radians) + c.X; q.Y = (p.X - c.X) * Math.Sin(radians) + (p.Y - c.Y) * Math.Cos(radians) + c.Y; return(q); }
public override bool Equals(object obj) { if (obj is PointR) { PointR p = (PointR)obj; return(X == p.X && Y == p.Y); } return(false); }
// translates the points by the given delta amounts public static ArrayList TranslateBy(ArrayList points, SizeR sz) { ArrayList newPoints = new ArrayList(points.Count); for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; p.X += sz.Width; p.Y += sz.Height; newPoints.Add(p); } return(newPoints); }
// scales the points so that the length of their shorter side // matches the length of the shorter side of the given box. // thus, both dimensions are warped proportionally, rather than // independently, like in the function ScaleTo. public static ArrayList ScaleToMin(ArrayList points, RectangleR box) { ArrayList newPoints = new ArrayList(points.Count); RectangleR r = FindBox(points); for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; p.X *= (box.MinSide / r.MinSide); p.Y *= (box.MinSide / r.MinSide); newPoints.Add(p); } return(newPoints); }
// scales by the percentages contained in the 'sz' parameter. values of 1.0 would result in the // identity scale (that is, no change). public static ArrayList ScaleBy(ArrayList points, SizeR sz) { ArrayList newPoints = new ArrayList(points.Count); RectangleR r = FindBox(points); for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; p.X *= sz.Width; p.Y *= sz.Height; newPoints.Add(p); } return(newPoints); }
// translates the points so that their centroid lies at 'toPt' public static ArrayList TranslateCentroidTo(ArrayList points, PointR toPt) { ArrayList newPoints = new ArrayList(points.Count); PointR centroid = Centroid(points); for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; p.X += (toPt.X - centroid.X); p.Y += (toPt.Y - centroid.Y); newPoints.Add(p); } return(newPoints); }
// translates the points so that the upper-left corner of their bounding box lies at 'toPt' public static ArrayList TranslateBBoxTo(ArrayList points, PointR toPt) { ArrayList newPoints = new ArrayList(points.Count); RectangleR r = Utils.FindBox(points); for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; p.X += (toPt.X - r.X); p.Y += (toPt.Y - r.Y); newPoints.Add(p); } return(newPoints); }
// scales the points so that they form the size given. does not restore the // origin of the box. public static ArrayList ScaleTo(ArrayList points, SizeR sz) { ArrayList newPoints = new ArrayList(points.Count); RectangleR r = FindBox(points); for (int i = 0; i < points.Count; i++) { PointR p = (PointR)points[i]; if (r.Width != 0.0) { p.X *= (sz.Width / r.Width); } if (r.Height != 0.0) { p.Y *= (sz.Height / r.Height); } newPoints.Add(p); } return(newPoints); }
public static ArrayList Resample(ArrayList points, int n) { double I = PathLength(points) / (n - 1); // interval length double D = 0.0; ArrayList srcPts = new ArrayList(points); ArrayList dstPts = new ArrayList(n); dstPts.Add(srcPts[0]); for (int i = 1; i < srcPts.Count; i++) { PointR pt1 = (PointR)srcPts[i - 1]; PointR pt2 = (PointR)srcPts[i]; double d = Distance(pt1, pt2); if ((D + d) >= I) { double qx = pt1.X + ((I - D) / d) * (pt2.X - pt1.X); double qy = pt1.Y + ((I - D) / d) * (pt2.Y - pt1.Y); PointR q = new PointR(qx, qy); dstPts.Add(q); // append new point 'q' srcPts.Insert(i, q); // insert 'q' at position i in points s.t. 'q' will be the next i D = 0.0; } else { D += d; } } // somtimes we fall a rounding-error short of adding the last point, so add it if so if (dstPts.Count == n - 1) { dstPts.Add(srcPts[srcPts.Count - 1]); } return(dstPts); }
// determines the angle, in degrees, between two points. the angle is defined // by the circle centered on the start point with a radius to the end point, // where 0 degrees is straight right from start (+x-axis) and 90 degrees is // straight down (+y-axis). public static double AngleInDegrees(PointR start, PointR end, bool positiveOnly) { double radians = AngleInRadians(start, end, positiveOnly); return(Rad2Deg(radians)); }
// copy constructor public PointR(PointR p) { X = p.X; Y = p.Y; T = p.T; }