/// <summary> /// /// </summary> /// <param name="timepoints"></param> /// <param name="protractor"></param> /// <returns></returns> public NBestList Recognize(List <TimePointF> timepoints, bool protractor) // candidate points { double I = GeotrigEx.PathLength(timepoints) / (NumPoints - 1); // interval distance between points List <PointF> points = TimePointF.ConvertList(SeriesEx.ResampleInSpace(timepoints, I)); double radians = GeotrigEx.Angle(GeotrigEx.Centroid(points), points[0], false); points = GeotrigEx.RotatePoints(points, -radians); points = GeotrigEx.ScaleTo(points, SquareSize); points = GeotrigEx.TranslateTo(points, Origin, true); List <double> vector = Unistroke.Vectorize(points); // candidate's vector representation NBestList nbest = new NBestList(); foreach (Unistroke u in _gestures.Values) { if (protractor) // Protractor extension by Yang Li (CHI 2010) { double[] best = OptimalCosineDistance(u.Vector, vector); double score = 1.0 / best[0]; nbest.AddResult(u.Name, score, best[0], best[1]); // name, score, distance, angle } else // original $1 angular invariance search -- Golden Section Search (GSS) { double[] best = GoldenSectionSearch( points, // to rotate u.Points, // to match GeotrigEx.Degrees2Radians(-45.0), // lbound GeotrigEx.Degrees2Radians(+45.0), // ubound GeotrigEx.Degrees2Radians(2.0) // threshold ); double score = 1.0 - best[0] / HalfDiagonal; nbest.AddResult(u.Name, score, best[0], best[1]); // name, score, distance, angle } } nbest.SortDescending(); // sort descending by score so that nbest[0] is best result return(nbest); }
/// <summary> /// Tests an entire batch of files. See comments atop MainForm.TestBatch_Click(). /// </summary> /// <param name="subject">Subject identification.</param> /// <param name="speed">"fast", "medium", or "slow"</param> /// <param name="categories">A list of gesture categories that each contain lists of prototypes (examples) within that gesture category.</param> /// <param name="dir">The directory into which to write the output files.</param> /// <param name="protractor">If true, uses Protractor instead of Golden Section Search.</param> /// <returns>The two filenames of the output file if successful; null otherwise. The main results are in string[0], /// while the detailed recognition results are in string[1].</returns> public string[] TestBatch(string subject, string speed, List <Category> categories, string dir, bool protractor) { StreamWriter mw = null; // main results writer StreamWriter dw = null; // detailed results writer string[] filenames = new string[2]; try { // set up a main results file and detailed results file int start = Environment.TickCount; filenames[0] = String.Format("{0}\\$1({1})_main_{2}.txt", dir, protractor ? "protractor" : "gss", start); // main results (small file) filenames[1] = String.Format("{0}\\$1({1})_nbest_{2}.txt", dir, protractor ? "protractor" : "gss", start); // recognition details (large file) mw = new StreamWriter(filenames[0], false, Encoding.UTF8); mw.WriteLine("Subject = {0}, Recognizer = $1, Search = {1}, Speed = {2}, StartTime(ms) = {3}", subject, protractor ? "protractor" : "gss", speed, start); mw.WriteLine("Subject Recognizer Search Speed NumTraining GestureType RecognitionRate\n"); dw = new StreamWriter(filenames[1], false, Encoding.UTF8); dw.WriteLine("Subject = {0}, Recognizer = $1, Search = {1}, Speed = {2}, StartTime(ms) = {3}", subject, protractor ? "protractor" : "gss", speed, start); dw.WriteLine("Correct? NumTrain Tested 1stCorrect Pts Ms Angle : (NBestNames) [NBestScores]\n"); // determine the number of gesture categories and the number of examples in each one int numCategories = categories.Count; int numExamples = categories[0].NumExamples; double totalTests = (numExamples - 1) * NumRandomTests; // outermost loop: trains on N=1..9, tests on 10-N (for e.g., numExamples = 10) for (int n = 1; n <= numExamples - 1; n++) { // storage for the final avg results for each category for this N double[] results = new double[numCategories]; // run a number of tests at this particular N number of training examples for (int r = 0; r < NumRandomTests; r++) { _gestures.Clear(); // clear any (old) loaded prototypes // load (train on) N randomly selected gestures in each category for (int i = 0; i < numCategories; i++) { int[] chosen = RandomEx.Array(0, numExamples - 1, n, true); // select N unique indices for (int j = 0; j < chosen.Length; j++) { Unistroke p = categories[i][chosen[j]]; // get the prototype from this category at chosen[j] _gestures.Add(p.Name, p); // load the randomly selected test gestures into the recognizer } } // testing loop on all unloaded gestures in each category. creates a recognition // rate (%) by averaging the binary outcomes (correct, incorrect) for each test. for (int i = 0; i < numCategories; i++) { // pick a random unloaded gesture in this category for testing. // instead of dumbly picking, first find out what indices aren't // loaded, and then randomly pick from those. int[] notLoaded = new int[numExamples - n]; for (int j = 0, k = 0; j < numExamples; j++) { Unistroke g = categories[i][j]; if (!_gestures.ContainsKey(g.Name)) { notLoaded[k++] = j; // jth gesture in categories[i] is not loaded } } int chosen = RandomEx.Integer(0, notLoaded.Length - 1); // index Unistroke p = categories[i][notLoaded[chosen]]; // gesture to test Debug.Assert(!_gestures.ContainsKey(p.Name)); // do the recognition! List <PointF> testPts = GeotrigEx.RotatePoints( // spin gesture randomly TimePointF.ConvertList(p.RawPoints), GeotrigEx.Degrees2Radians(RandomEx.Integer(0, 359)) ); NBestList result = this.Recognize(TimePointF.ConvertList(testPts), protractor); string category = Category.ParseName(result.Name); int correct = (category == categories[i].Name) ? 1 : 0; dw.WriteLine("{0} {1} {2} {3} {4} {5} {6:F1}{7} : ({8}) [{9}]", correct, // Correct? n, // NumTrain p.Name, // Tested FirstCorrect(p.Name, result.Names), // 1stCorrect p.RawPoints.Count, // Pts p.Duration, // Ms Math.Round(result.Angle, 1), (char)176, // Angle tweaking : result.NamesString, // (NBestNames) result.ScoresString); // [NBestScores] results[i] += correct; } // provide feedback as to how many tests have been performed thus far. double testsSoFar = ((n - 1) * NumRandomTests) + r; ProgressChangedEvent(this, new ProgressEventArgs(testsSoFar / totalTests)); // callback } // // now create the final results for this N and write them to a file // for (int i = 0; i < numCategories; i++) { results[i] /= (double)NumRandomTests; // normalize by the number of tests at this N Category c = (Category)categories[i]; // Subject Recognizer Search Speed NumTraining GestureType RecognitionRate mw.WriteLine("{0} $1 {1} {2} {3} {4} {5:F3}", subject, protractor ? "protractor" : "gss", speed, n, c.Name, Math.Round(results[i], 3) ); } } // time-stamp the end of the processing int end = Environment.TickCount; mw.WriteLine("\nEndTime(ms) = {0}, Minutes = {1:F2}", end, Math.Round((end - start) / 60000.0, 2)); dw.WriteLine("\nEndTime(ms) = {0}, Minutes = {1:F2}", end, Math.Round((end - start) / 60000.0, 2)); } catch (Exception ex) { Console.WriteLine(ex.Message); filenames = null; } finally { if (mw != null) { mw.Close(); } if (dw != null) { dw.Close(); } } return(filenames); }
private void RecognizeAndDisplayResults() { NBestList result = _rec.Recognize(_points, _protractor); label2.Text = result.Name + " , " + Math.Round(result.Score, 2); }