Esempio n. 1
0
  public static environment_data analyze_environment(CelestialBody body, double altitude_mult)
  {
    // shortcuts
    CelestialBody sun = Sim.Sun();

    // calculate data
    environment_data env = new environment_data();
    env.body = body;
    env.altitude = body.Radius * altitude_mult;
    env.landed = env.altitude <= double.Epsilon;
    env.breathable = env.landed && body.atmosphereContainsOxygen;
    env.sun_dist = Sim.Apoapsis(Lib.PlanetarySystem(body)) - sun.Radius - body.Radius;
    Vector3d sun_dir = (sun.position - body.position).normalized;
    env.sun_flux = Sim.SolarFlux(env.sun_dist);
    env.body_flux = Sim.BodyFlux(body, body.position + sun_dir * (body.Radius + env.altitude));
    env.body_back_flux = Sim.BodyFlux(body, body.position - sun_dir * (body.Radius + env.altitude));
    env.background_temp = Sim.BackgroundTemperature();
    env.sun_temp = Sim.BlackBody(env.sun_flux);
    env.body_temp = Sim.BlackBody(env.body_flux);
    env.body_back_temp = Sim.BlackBody(env.body_back_flux);
    env.light_temp = env.background_temp + env.sun_temp + env.body_temp;
    env.shadow_temp = env.background_temp + env.body_back_temp;
    env.atmo_temp = body.GetTemperature(0.0);
    env.orbital_period = Sim.OrbitalPeriod(body, env.altitude);
    env.shadow_period = Sim.ShadowPeriod(body, env.altitude);
    env.shadow_time = env.shadow_period / env.orbital_period;
    env.temp_diff = env.landed && body.atmosphere
      ? Math.Abs(Settings.SurvivalTemperature - env.atmo_temp)
      : Lib.Mix(Math.Abs(Settings.SurvivalTemperature - env.light_temp), Math.Abs(Settings.SurvivalTemperature - env.shadow_temp), env.shadow_time);
    env.atmo_factor = env.landed ? Sim.AtmosphereFactor(body, 0.7071) : 1.0;

    // return data
    return env;
  }
Esempio n. 2
0
        public static void Body_info(this Panel p)
        {
            // only show in mapview
            if (!MapView.MapIsEnabled)
            {
                return;
            }

            // only show if there is a selected body and that body is not the sun
            CelestialBody body = Lib.MapViewSelectedBody();

            if (body == null || (Lib.IsSun(body) && !Features.Radiation))
            {
                return;
            }

            // calculate radiation at body surface
            double surfaceRadiation = Radiation.ComputeSurface(body, Sim.GammaTransparency(body, 0.0));

            // for all bodies except sun(s)
            if (!Lib.IsSun(body))
            {
                CelestialBody mainSun;
                Vector3d      sun_dir;
                double        sun_dist;
                double        solar_flux = Sim.SolarFluxAtBody(body, false, out mainSun, out sun_dir, out sun_dist);
                solar_flux *= Sim.AtmosphereFactor(body, 0.7071);

                // calculate simulation values
                double albedo_flux = Sim.AlbedoFlux(body, body.position + sun_dir * body.Radius);
                double body_flux   = Sim.BodyFlux(body, 0.0);
                double total_flux  = solar_flux + albedo_flux + body_flux + Sim.BackgroundFlux();
                double temperature = body.atmosphere ? body.GetTemperature(0.0) : Sim.BlackBodyTemperature(total_flux);

                // calculate night-side temperature
                double total_flux_min  = Sim.AlbedoFlux(body, body.position - sun_dir * body.Radius) + body_flux + Sim.BackgroundFlux();
                double temperature_min = Sim.BlackBodyTemperature(total_flux_min);

                // surface panel
                string temperature_str = body.atmosphere
                                  ? Lib.HumanReadableTemp(temperature)
                                  : Lib.BuildString(Lib.HumanReadableTemp(temperature_min), " / ", Lib.HumanReadableTemp(temperature));
                p.AddSection(Local.BodyInfo_SURFACE);                                      //"SURFACE"
                p.AddContent(Local.BodyInfo_temperature, temperature_str);                 //"temperature"
                p.AddContent(Local.BodyInfo_solarflux, Lib.HumanReadableFlux(solar_flux)); //"solar flux"
                if (Features.Radiation)
                {
                    p.AddContent(Local.BodyInfo_radiation, Lib.HumanReadableRadiation(surfaceRadiation));                                    //"radiation"
                }
                // atmosphere panel
                if (body.atmosphere)
                {
                    p.AddSection(Local.BodyInfo_ATMOSPHERE);                                                                                      //"ATMOSPHERE"
                    p.AddContent(Local.BodyInfo_breathable, Sim.Breathable(body) ? Local.BodyInfo_breathable_yes : Local.BodyInfo_breathable_no); //"breathable""yes""no"
                    p.AddContent(Local.BodyInfo_lightabsorption, Lib.HumanReadablePerc(1.0 - Sim.AtmosphereFactor(body, 0.7071)));                //"light absorption"
                    if (Features.Radiation)
                    {
                        p.AddContent(Local.BodyInfo_gammaabsorption, Lib.HumanReadablePerc(1.0 - Sim.GammaTransparency(body, 0.0)));                                        //"gamma absorption"
                    }
                }
            }

            // radiation panel
            if (Features.Radiation)
            {
                p.AddSection(Local.BodyInfo_RADIATION);                //"RADIATION"

                string inner, outer, pause;
                double activity, cycle;
                RadiationLevels(body, out inner, out outer, out pause, out activity, out cycle);

                if (Storm.sun_observation_quality > 0.5 && activity > -1)
                {
                    string title = Local.BodyInfo_solaractivity;                    //"solar activity"

                    if (Storm.sun_observation_quality > 0.7)
                    {
                        title = Lib.BuildString(title, ": ", Lib.Color(Local.BodyInfo_stormcycle.Format(Lib.HumanReadableDuration(cycle)), Lib.Kolor.LightGrey));                        // <<1>> cycle
                    }

                    p.AddContent(title, Lib.HumanReadablePerc(activity));
                }

                if (Storm.sun_observation_quality > 0.8)
                {
                    p.AddContent(Local.BodyInfo_radiationonsurface, Lib.HumanReadableRadiation(surfaceRadiation));                    //"radiation on surface:"
                }

                p.AddContent(Lib.BuildString(Local.BodyInfo_innerbelt, " ", Lib.Color(inner, Lib.Kolor.LightGrey)),                                                                                           //"inner belt: "
                             Radiation.show_inner ? Lib.Color(Local.BodyInfo_show, Lib.Kolor.Green) : Lib.Color(Local.BodyInfo_hide, Lib.Kolor.Red), string.Empty, () => p.Toggle(ref Radiation.show_inner)); //"show""hide"
                p.AddContent(Lib.BuildString(Local.BodyInfo_outerbelt, " ", Lib.Color(outer, Lib.Kolor.LightGrey)),                                                                                           //"outer belt: "
                             Radiation.show_outer ? Lib.Color(Local.BodyInfo_show, Lib.Kolor.Green) : Lib.Color(Local.BodyInfo_hide, Lib.Kolor.Red), string.Empty, () => p.Toggle(ref Radiation.show_outer)); //"show""hide"
                p.AddContent(Lib.BuildString(Local.BodyInfo_magnetopause, " ", Lib.Color(pause, Lib.Kolor.LightGrey)),                                                                                        //"magnetopause: "
                             Radiation.show_pause ? Lib.Color(Local.BodyInfo_show, Lib.Kolor.Green) : Lib.Color(Local.BodyInfo_hide, Lib.Kolor.Red), string.Empty, () => p.Toggle(ref Radiation.show_pause)); //"show""hide"
            }

            // explain the user how to toggle the BodyInfo window
            p.AddContent(string.Empty);
            p.AddContent("<i>" + Local.BodyInfo_BodyInfoToggleHelp.Format("<b>B</b>") + "</i>");            //"Press <<1>> to open this window again"

            // set metadata
            p.Title(Lib.BuildString(Lib.Ellipsis(body.bodyName, Styles.ScaleStringLength(24)), " ", Lib.Color(Local.BodyInfo_title, Lib.Kolor.LightGrey)));            //"BODY INFO"
        }
Esempio n. 3
0
        public Vessel_info(Vessel v, UInt64 vessel_id, UInt64 inc)
        {
            // NOTE: anything used here can't in turn use cache, unless you know what you are doing

            // NOTE: you can't cache vessel position
            // at any point in time all vessel/body positions are relative to a different frame of reference
            // so comparing the current position of a vessel, with the cached one of another make no sense

            // associate with an unique incremental id
            this.inc = inc;

            // determine if this is a valid vessel
            is_vessel = Lib.IsVessel(v);
            if (!is_vessel)
            {
                return;
            }

            // determine if this is a rescue mission vessel
            is_rescue = Misc.IsRescueMission(v);
            if (is_rescue)
            {
                return;
            }

            // dead EVA are not valid vessels
            if (EVA.IsDead(v))
            {
                return;
            }

            // shortcut for common tests
            is_valid = true;

            // generate id once
            id = vessel_id;

            // calculate crew info for the vessel
            crew_count    = Lib.CrewCount(v);
            crew_capacity = Lib.CrewCapacity(v);

            // get vessel position
            Vector3d position = Lib.VesselPosition(v);

            // this should never happen again
            if (Vector3d.Distance(position, v.mainBody.position) < 1.0)
            {
                throw new Exception("Shit hit the fan for vessel " + v.vesselName);
            }

            // determine if there is enough EC for a powered state
            powered = ResourceCache.Info(v, "ElectricCharge").amount > double.Epsilon;

            // determine if in sunlight, calculate sun direction and distance
            sunlight = Sim.RaytraceBody(v, position, FlightGlobals.Bodies[0], out sun_dir, out sun_dist) ? 1.0 : 0.0;

            // environment stuff
            atmo_factor        = Sim.AtmosphereFactor(v.mainBody, position, sun_dir);
            gamma_transparency = Sim.GammaTransparency(v.mainBody, v.altitude);
            underwater         = Sim.Underwater(v);
            breathable         = Sim.Breathable(v, underwater);
            landed             = Lib.Landed(v);
            zerog = !landed && (!v.mainBody.atmosphere || v.mainBody.atmosphereDepth < v.altitude);

            if (v.mainBody.flightGlobalsIndex != 0 && TimeWarp.CurrentRate > 1000.0f)
            {
                highspeedWarp(v);
            }

            // temperature at vessel position
            temperature = Sim.Temperature(v, position, sunlight, atmo_factor, out solar_flux, out albedo_flux, out body_flux, out total_flux);
            temp_diff   = Sim.TempDiff(temperature, v.mainBody, landed);

            // radiation
            radiation = Radiation.Compute(v, position, gamma_transparency, sunlight, out blackout, out magnetosphere, out inner_belt, out outer_belt, out interstellar);

            // extended atmosphere
            thermosphere = Sim.InsideThermosphere(v);
            exosphere    = Sim.InsideExosphere(v);

            // malfunction stuff
            malfunction = Reliability.HasMalfunction(v);
            critical    = Reliability.HasCriticalFailure(v);

            // communications info
            connection   = new ConnectionInfo(v, powered, blackout);
            transmitting = Science.Transmitting(v, connection.linked && connection.rate > double.Epsilon);

            // habitat data
            volume          = Habitat.Tot_volume(v);
            surface         = Habitat.Tot_surface(v);
            pressure        = Habitat.Pressure(v);
            evas            = (uint)(Math.Max(0, ResourceCache.Info(v, "Nitrogen").amount - 330) / PreferencesLifeSupport.Instance.evaAtmoLoss);
            poisoning       = Habitat.Poisoning(v);
            humidity        = Habitat.Humidity(v);
            shielding       = Habitat.Shielding(v);
            living_space    = Habitat.Living_space(v);
            volume_per_crew = Habitat.Volume_per_crew(v);
            comforts        = new Comforts(v, landed, crew_count > 1, connection.linked && connection.rate > double.Epsilon);

            // data about greenhouses
            greenhouses = Greenhouse.Greenhouses(v);

            // other stuff
            gravioli = Sim.Graviolis(v);
        }
Esempio n. 4
0
            /// <summary>
            /// Update the 'sunsInfo' list and the 'mainSun', 'solarFluxTotal' variables.
            /// Uses discrete or analytic (for high timewarp speeds) evaluation methods based on the isAnalytic bool.
            /// Require the 'visibleBodies' variable to be set.
            /// </summary>
            // at the two highest timewarp speed, the number of sun visibility samples drop to the point that
            // the quantization error first became noticeable, and then exceed 100%, to solve this :
            // - we switch to an analytical estimation of the sunlight/shadow period
            // - atmo_factor become an average atmospheric absorption factor over the daylight period (not the whole day)
            public static void UpdateSunsInfo(VesselData vd, Vector3d vesselPosition)
            {
                Vessel v             = vd.Vessel;
                double lastSolarFlux = 0.0;

                vd.sunsInfo          = new List <SunInfo>(Sim.suns.Count);
                vd.solarFluxTotal    = 0.0;
                vd.rawSolarFluxTotal = 0.0;

                foreach (Sim.SunData sunData in Sim.suns)
                {
                    SunInfo sunInfo = new SunInfo(sunData);

                    if (vd.isAnalytic)
                    {
                        // get sun direction and distance
                        Lib.DirectionAndDistance(vesselPosition, sunInfo.sunData.body, out sunInfo.direction, out sunInfo.distance);
                        // analytical estimation of the portion of orbit that was in sunlight, current limitations :
                        // - the result is dependant on the vessel altitude at the time of evaluation,
                        //   consequently it gives inconsistent behavior with highly eccentric orbits
                        // - this totally ignore the orbit inclinaison, polar orbits will be treated as equatorial orbits
                        sunInfo.sunlightFactor = 1.0 - Sim.ShadowPeriod(v) / Sim.OrbitalPeriod(v);
                        // get atmospheric absorbtion
                        // for atmospheric bodies whose rotation period is less than 120 hours,
                        // determine analytic atmospheric absorption over a single body revolution instead
                        // of using a discrete value that would be unreliable at large timesteps :
                        if (vd.inAtmosphere)
                        {
                            sunInfo.atmoFactor = Sim.AtmosphereFactorAnalytic(v.mainBody, vesselPosition, sunInfo.direction);
                        }
                        else
                        {
                            sunInfo.atmoFactor = 1.0;
                        }
                    }
                    else
                    {
                        // determine if in sunlight, calculate sun direction and distance
                        sunInfo.sunlightFactor = Sim.IsBodyVisible(v, vesselPosition, sunData.body, vd.visibleBodies, out sunInfo.direction, out sunInfo.distance) ? 1.0 : 0.0;
                        // get atmospheric absorbtion
                        sunInfo.atmoFactor = Sim.AtmosphereFactor(v.mainBody, vesselPosition, sunInfo.direction);
                    }

                    // get resulting solar flux in W/m²
                    sunInfo.rawSolarFlux = sunInfo.sunData.SolarFlux(sunInfo.distance);
                    sunInfo.solarFlux    = sunInfo.rawSolarFlux * sunInfo.sunlightFactor * sunInfo.atmoFactor;
                    // increment total flux from all stars
                    vd.rawSolarFluxTotal += sunInfo.rawSolarFlux;
                    vd.solarFluxTotal    += sunInfo.solarFlux;
                    // add the star to the list
                    vd.sunsInfo.Add(sunInfo);
                    // the most powerful star will be our "default" sun. Uses raw flux before atmo / sunlight factor
                    if (sunInfo.rawSolarFlux > lastSolarFlux)
                    {
                        lastSolarFlux = sunInfo.rawSolarFlux;
                        vd.mainSun    = sunInfo;
                    }
                }

                vd.sunlightFactor = 0.0;
                foreach (SunInfo sunInfo in vd.sunsInfo)
                {
                    sunInfo.fluxProportion = sunInfo.rawSolarFlux / vd.rawSolarFluxTotal;
                    vd.sunlightFactor     += sunInfo.SunlightFactor * sunInfo.fluxProportion;
                }
                // avoid rounding errors
                if (vd.sunlightFactor > 0.99)
                {
                    vd.sunlightFactor = 1.0;
                }
            }
Esempio n. 5
0
  public vessel_info(Vessel v, uint vessel_id, UInt64 inc)
  {
    // NOTE: anything used here can't in turn use cache, unless you know what you are doing

    // NOTE: you can't cache vessel position
    // at any point in time all vessel/body positions are relative to a different frame of reference
    // so comparing the current position of a vessel, with the cached one of another make no sense

    // associate with an unique incremental id
    this.inc = inc;

    // determine if this is a valid vessel
    is_vessel = Lib.IsVessel(v);
    if (!is_vessel) return;

    // determine if this is a rescue mission vessel
    is_rescue = Misc.IsRescueMission(v);
    if (is_rescue) return;

    // dead EVA are not valid vessels
    if (EVA.IsDead(v)) return;

    // shortcut for common tests
    is_valid = true;

    // generate id once
    id = vessel_id;

    // calculate crew info for the vessel
    crew_count = Lib.CrewCount(v);
    crew_capacity = Lib.CrewCapacity(v);

    // get vessel position
    Vector3d position = Lib.VesselPosition(v);

    // this should never happen again
    if (Vector3d.Distance(position, v.mainBody.position) < 1.0)
    {
      throw new Exception("Shit hit the fan for vessel " + v.vesselName);
    }

    // determine if in sunlight, calculate sun direction and distance
    sunlight = Sim.RaytraceBody(v, position, FlightGlobals.Bodies[0], out sun_dir, out sun_dist) ? 1.0 : 0.0;

    // at the two highest timewarp speed, the number of sun visibility samples drop to the point that
    // the quantization error first became noticeable, and then exceed 100%
    // to solve this, we switch to an analytical estimation of the portion of orbit that was in sunlight
    // - we check against timewarp rate, instead of index, to avoid issues during timewarp blending
    if (v.mainBody.flightGlobalsIndex != 0 && TimeWarp.CurrentRate > 1000.0f)
    {
      sunlight = 1.0 - Sim.ShadowPeriod(v) / Sim.OrbitalPeriod(v);
    }

    // environment stuff
    atmo_factor = Sim.AtmosphereFactor(v.mainBody, position, sun_dir);
    gamma_transparency = Sim.GammaTransparency(v.mainBody, v.altitude);
    underwater = Sim.Underwater(v);
    breathable = Sim.Breathable(v, underwater);
    landed = Lib.Landed(v);

    // temperature at vessel position
    temperature = Sim.Temperature(v, position, sunlight, atmo_factor, out solar_flux, out albedo_flux, out body_flux, out total_flux);
    temp_diff = Sim.TempDiff(temperature, v.mainBody, landed);

    // radiation
    radiation = Radiation.Compute(v, position, gamma_transparency, sunlight, out blackout, out magnetosphere, out inner_belt, out outer_belt, out interstellar);

    // extended atmosphere
    thermosphere = Sim.InsideThermosphere(v);
    exosphere = Sim.InsideExosphere(v);

    // malfunction stuff
    malfunction = Reliability.HasMalfunction(v);
    critical = Reliability.HasCriticalFailure(v);

    // signal info
    antenna = new AntennaInfo(v);
    avoid_inf_recursion.Add(v.id);
    connection = Signal.connection(v, position, antenna, blackout, avoid_inf_recursion);
    transmitting = Science.transmitting(v, connection.linked);
    relaying = Signal.relaying(v, avoid_inf_recursion);
    avoid_inf_recursion.Remove(v.id);

    // habitat data
    volume = Habitat.tot_volume(v);
    surface = Habitat.tot_surface(v);
    pressure = Habitat.pressure(v);
    poisoning = Habitat.poisoning(v);
    shielding = Habitat.shielding(v);
    living_space = Habitat.living_space(v);
    comforts = new Comforts(v, landed, crew_count > 1, connection.linked);

    // data about greenhouses
    greenhouses = Greenhouse.Greenhouses(v);

    // other stuff
    gravioli = Sim.Graviolis(v);
  }
Esempio n. 6
0
  // draw the window
  void render(int _)
  {
    // shortcut
    CelestialBody sun = FlightGlobals.Bodies[0];

    // get selected body
    CelestialBody body = Lib.SelectedBody();

    // calculate simulation values
    double atmo_factor = Sim.AtmosphereFactor(body, 0.7071);
    double gamma_factor = Sim.GammaTransparency(body, 0.0);
    double sun_dist = Sim.Apoapsis(Lib.PlanetarySystem(body)) - sun.Radius - body.Radius;
    Vector3d sun_dir = (sun.position - body.position).normalized;
    double solar_flux = Sim.SolarFlux(sun_dist) * atmo_factor;
    double albedo_flux = Sim.AlbedoFlux(body, body.position + sun_dir * body.Radius);
    double body_flux = Sim.BodyFlux(body, 0.0);
    double total_flux = solar_flux + albedo_flux + body_flux + Sim.BackgroundFlux();
    double temperature = body.atmosphere ? body.GetTemperature(0.0) : Sim.BlackBodyTemperature(total_flux);

    // calculate night-side temperature
    double total_flux_min = Sim.AlbedoFlux(body, body.position - sun_dir * body.Radius) + body_flux + Sim.BackgroundFlux();
    double temperature_min = Sim.BlackBodyTemperature(total_flux_min);

    // calculate radiation at body surface
    double radiation = Radiation.ComputeSurface(body, gamma_factor);

    // draw pseudo-title
    GUILayout.BeginHorizontal();
    GUILayout.Label(body.bodyName.ToUpper(), top_style);
    GUILayout.EndHorizontal();

    // surface panel
    string temperature_str = body.atmosphere
      ? Lib.HumanReadableTemp(temperature)
      : Lib.BuildString(Lib.HumanReadableTemp(temperature_min), " / ", Lib.HumanReadableTemp(temperature));
    render_title("SURFACE");
    render_content("temperature", temperature_str);
    render_content("radiation", Lib.HumanReadableRadiationRate(radiation));
    render_content("solar flux", Lib.HumanReadableFlux(solar_flux));
    render_space();

    // atmosphere panel
    if (body.atmosphere)
    {
      render_title("ATMOSPHERE");
      render_content("breathable", body.atmosphereContainsOxygen ? "yes" : "no");
      render_content("light absorption", Lib.HumanReadablePerc(1.0 - Sim.AtmosphereFactor(body, 0.7071)));
      render_content("gamma absorption", Lib.HumanReadablePerc(1.0 - Sim.GammaTransparency(body, 0.0)));
      render_space();
    }

    // rendering panel
    render_title("RENDERING");
    render_content("inner belt", ref Radiation.show_inner);
    render_content("outer belt", ref Radiation.show_outer);
    render_content("magnetopause", ref Radiation.show_pause);
    render_space();


    // draw footer
    GUILayout.BeginHorizontal();
    GUILayout.Label("(ALT+N to open and close)", bot_style);
    if (Lib.IsClicked()) Close();
    GUILayout.EndHorizontal();

    // enable dragging
    GUI.DragWindow(drag_rect);
  }
Esempio n. 7
0
  public vessel_info(Vessel v, uint vessel_id, UInt64 inc)
  {
    // NOTE: anything used here can't in turn use cache, unless you know what you are doing

    // associate with an unique incremental id
    this.inc = inc;

    // determine if this is a valid vessel
    is_vessel = Lib.IsVessel(v);
    if (!is_vessel) return;

    // determine if this is a resque mission vessel
    is_resque = Lib.IsResqueMission(v);
    if (is_resque) return;

    // dead EVA are not valid vessels
    if (v.isEVA && EVA.KerbalData(v).eva_dead) return;

    // shortcut for common tests
    is_valid = true;

    // generate id once
    id = vessel_id;

    // calculate crew info for the vessel
    crew_count = Lib.CrewCount(v);
    crew_capacity = Lib.CrewCapacity(v);

    // get vessel position once
    position = Lib.VesselPosition(v);

    // determine if in sunlight, calculate sun direction and distance
    sunlight = Sim.RaytraceBody(v, position, FlightGlobals.Bodies[0], out sun_dir, out sun_dist) ? 1.0 : 0.0;

    // if the orbit length vs simulation step is lower than an acceptable threshold, use discrete sun visibility
    if (v.mainBody.flightGlobalsIndex != 0)
    {
      double orbit_period = Sim.OrbitalPeriod(v);
      if (orbit_period / Kerbalism.elapsed_s < 16.0) sunlight = 1.0 - Sim.ShadowPeriod(v) / orbit_period;
    }

    // calculate environment stuff
    atmo_factor = Sim.AtmosphereFactor(v.mainBody, position, sun_dir);
    gamma_transparency = Sim.GammaTransparency(v.mainBody, v.altitude);
    breathable = Sim.Breathable(v);
    landed = Lib.Landed(v);

    // calculate temperature at vessel position
    temperature = Sim.Temperature(v, position, sunlight, atmo_factor, out solar_flux, out albedo_flux, out body_flux, out total_flux);

    // calculate radiation
    radiation = Radiation.Compute(v, position, gamma_transparency, sunlight, out blackout, out inside_pause, out inside_belt);

    // calculate malfunction stuff
    max_malfunction = Reliability.MaxMalfunction(v);
    avg_quality = Reliability.AverageQuality(v);

    // calculate signal info
    antenna = new antenna_data(v);
    avoid_inf_recursion.Add(v.id);
    link = Signal.Link(v, position, antenna, blackout, avoid_inf_recursion);
    avoid_inf_recursion.Remove(v.id);

    // partial data about modules, used by vessel info/monitor
    scrubbers = Scrubber.PartialData(v);
    recyclers = Recycler.PartialData(v);
    greenhouses = Greenhouse.PartialData(v);

    // woot relativity
    time_dilation = Sim.TimeDilation(v);
  }
Esempio n. 8
0
  public static void body_info(this Panel p)
  {
    // only show in mapview
    if (!MapView.MapIsEnabled) return;

    // only show if there is a selected body and that body is not the sun
    CelestialBody body = Lib.SelectedBody();
    if (body == null || (body.flightGlobalsIndex == 0 && !Features.Radiation)) return;

    // shortcut
    CelestialBody sun = FlightGlobals.Bodies[0];

    // for all bodies except the sun
    if (body != sun)
    {
      // calculate simulation values
      double atmo_factor = Sim.AtmosphereFactor(body, 0.7071);
      double gamma_factor = Sim.GammaTransparency(body, 0.0);
      double sun_dist = Sim.Apoapsis(Lib.PlanetarySystem(body)) - sun.Radius - body.Radius;
      Vector3d sun_dir = (sun.position - body.position).normalized;
      double solar_flux = Sim.SolarFlux(sun_dist) * atmo_factor;
      double albedo_flux = Sim.AlbedoFlux(body, body.position + sun_dir * body.Radius);
      double body_flux = Sim.BodyFlux(body, 0.0);
      double total_flux = solar_flux + albedo_flux + body_flux + Sim.BackgroundFlux();
      double temperature = body.atmosphere ? body.GetTemperature(0.0) : Sim.BlackBodyTemperature(total_flux);

      // calculate night-side temperature
      double total_flux_min = Sim.AlbedoFlux(body, body.position - sun_dir * body.Radius) + body_flux + Sim.BackgroundFlux();
      double temperature_min = Sim.BlackBodyTemperature(total_flux_min);

      // calculate radiation at body surface
      double radiation = Radiation.ComputeSurface(body, gamma_factor);

      // surface panel
      string temperature_str = body.atmosphere
        ? Lib.HumanReadableTemp(temperature)
        : Lib.BuildString(Lib.HumanReadableTemp(temperature_min), " / ", Lib.HumanReadableTemp(temperature));
      p.section("SURFACE");
      p.content("temperature", temperature_str);
      p.content("solar flux", Lib.HumanReadableFlux(solar_flux));
      if (Features.Radiation) p.content("radiation", Lib.HumanReadableRadiation(radiation));

      // atmosphere panel
      if (body.atmosphere)
      {
        p.section("ATMOSPHERE");
        p.content("breathable", Sim.Breathable(body) ? "yes" : "no");
        p.content("light absorption", Lib.HumanReadablePerc(1.0 - Sim.AtmosphereFactor(body, 0.7071)));
        if (Features.Radiation) p.content("gamma absorption", Lib.HumanReadablePerc(1.0 - Sim.GammaTransparency(body, 0.0)));
      }
    }

    // rendering panel
    if (Features.Radiation)
    {
      p.section("RENDERING");
      p.content("inner belt",   Radiation.show_inner ? "<color=green>show</color>" : "<color=red>hide</color>", string.Empty, () => p.toggle(ref Radiation.show_inner));
      p.content("outer belt",   Radiation.show_outer ? "<color=green>show</color>" : "<color=red>hide</color>", string.Empty, () => p.toggle(ref Radiation.show_outer));
      p.content("magnetopause", Radiation.show_pause ? "<color=green>show</color>" : "<color=red>hide</color>", string.Empty, () => p.toggle(ref Radiation.show_pause));
    }

    // explain the user how to toggle the BodyInfo window
    p.content(string.Empty);
    p.content("<i>Press <b>B</b> to open this window again</i>");

    // set metadata
    p.title(Lib.BuildString(Lib.Ellipsis(body.bodyName, 24), " <color=#cccccc>BODY INFO</color>"));
  }
Esempio n. 9
0
            /// <summary>
            /// Update the 'sunsInfo' list and the 'mainSun', 'solarFluxTotal' variables.
            /// Uses discrete or analytic (for high timewarp speeds) evaluation methods based on the isAnalytic bool.
            /// Require the 'visibleBodies' variable to be set.
            /// </summary>
            // at the two highest timewarp speed, the number of sun visibility samples drop to the point that
            // the quantization error first became noticeable, and then exceed 100%, to solve this:
            // - we switch to an analytical estimation of the sunlight/shadow period
            // - atmo_factor become an average atmospheric absorption factor over the daylight period (not the whole day)
            public static void UpdateSunsInfo(VesselData vd, Vector3d vesselPosition, double elapsedSeconds)
            {
                Vessel v             = vd.Vessel;
                double lastSolarFlux = 0.0;

                vd.sunsInfo          = new List <SunInfo>(Sim.suns.Count);
                vd.solarFluxTotal    = 0.0;
                vd.rawSolarFluxTotal = 0.0;

                foreach (Sim.SunData sunData in Sim.suns)
                {
                    SunInfo sunInfo = new SunInfo(sunData);

                    if (vd.isAnalytic)
                    {
                        // get sun direction and distance
                        Lib.DirectionAndDistance(vesselPosition, sunInfo.sunData.body, out sunInfo.direction, out sunInfo.distance);
                        // analytical estimation of the portion of orbit that was in sunlight.
                        // it has some limitations, see the comments on Sim.ShadowPeriod

                        if (Settings.UseSamplingSunFactor)
                        {
                            // sampling estimation of the portion of orbit that is in sunlight
                            // until we will calculate again
                            sunInfo.sunlightFactor = Sim.SampleSunFactor(v, elapsedSeconds);
                        }

                        else
                        {
                            // analytical estimation of the portion of orbit that was in sunlight.
                            // it has some limitations, see the comments on Sim.ShadowPeriod
                            sunInfo.sunlightFactor = 1.0 - Sim.ShadowPeriod(v) / Sim.OrbitalPeriod(v);
                        }


                        // get atmospheric absorbtion
                        // for atmospheric bodies whose rotation period is less than 120 hours,
                        // determine analytic atmospheric absorption over a single body revolution instead
                        // of using a discrete value that would be unreliable at large timesteps :
                        if (vd.inAtmosphere)
                        {
                            sunInfo.atmoFactor = Sim.AtmosphereFactorAnalytic(v.mainBody, vesselPosition, sunInfo.direction);
                        }
                        else
                        {
                            sunInfo.atmoFactor = 1.0;
                        }
                    }
                    else
                    {
                        // determine if in sunlight, calculate sun direction and distance
                        sunInfo.sunlightFactor = Sim.IsBodyVisible(v, vesselPosition, sunData.body, vd.visibleBodies, out sunInfo.direction, out sunInfo.distance) ? 1.0 : 0.0;
                        // get atmospheric absorbtion
                        sunInfo.atmoFactor = Sim.AtmosphereFactor(v.mainBody, vesselPosition, sunInfo.direction);
                    }

                    // get resulting solar flux in W/m²
                    sunInfo.rawSolarFlux = sunInfo.sunData.SolarFlux(sunInfo.distance);
                    sunInfo.solarFlux    = sunInfo.rawSolarFlux * sunInfo.sunlightFactor * sunInfo.atmoFactor;
                    // increment total flux from all stars
                    vd.rawSolarFluxTotal += sunInfo.rawSolarFlux;
                    vd.solarFluxTotal    += sunInfo.solarFlux;
                    // add the star to the list
                    vd.sunsInfo.Add(sunInfo);
                    // the most powerful star will be our "default" sun. Uses raw flux before atmo / sunlight factor
                    if (sunInfo.rawSolarFlux > lastSolarFlux)
                    {
                        lastSolarFlux = sunInfo.rawSolarFlux;
                        vd.mainSun    = sunInfo;
                    }
                }

                vd.sunlightFactor = 0.0;
                foreach (SunInfo sunInfo in vd.sunsInfo)
                {
                    sunInfo.fluxProportion = sunInfo.rawSolarFlux / vd.rawSolarFluxTotal;
                    vd.sunlightFactor     += sunInfo.SunlightFactor * sunInfo.fluxProportion;
                }
                // avoid rounding errors
                if (vd.sunlightFactor > 0.99)
                {
                    vd.sunlightFactor = 1.0;
                }
            }
Esempio n. 10
0
  // called at every simulation step
  public void FixedUpdate()
  {
    // do nothing if paused
    if (Lib.IsPaused()) return;

    // do nothing if DB isn't ready
    if (!DB.Ready()) return;

    // for each vessel
    foreach(Vessel vessel in FlightGlobals.Vessels)
    {
      // skip invalid vessels
      if (!Lib.IsVessel(vessel)) continue;

      // skip loaded vessels
      if (vessel.loaded) continue;

      // get vessel data from the db
      vessel_data vd = DB.VesselData(vessel.id);

      // get vessel info from the cache
      vessel_info info = Cache.VesselInfo(vessel);

      // calculate atmospheric factor (proportion of flux not blocked by atmosphere)
      double atmo_factor = Sim.AtmosphereFactor(vessel.mainBody, info.position, info.sun_dir);

      // for each part
      foreach(ProtoPartSnapshot part in vessel.protoVessel.protoPartSnapshots)
      {
        // get part prefab (required for module properties)
        Part part_prefab = PartLoader.getPartInfoByName(part.partName).partPrefab;

        // store index of ModuleResourceConverter to process
        // rationale: a part can contain multiple resource converters
        int converter_index = 0;

        // for each module
        foreach(ProtoPartModuleSnapshot module in part.modules)
        {
          // something weird is going on, skip this
          if (!part_prefab.Modules.Contains(module.moduleName)) continue;

          // command module
          if (module.moduleName == "ModuleCommand")
          {
            // get module from prefab
            ModuleCommand command = part_prefab.Modules.GetModules<ModuleCommand>()[0];

            // do not consume if this is a MCM with no crew
            // rationale: for consistency, the game doesn't consume resources for MCM without crew in loaded vessels
            //            this make some sense: you left a vessel with some battery and nobody on board, you expect it to not consume EC
            if (command.minimumCrew == 0 || part.protoModuleCrew.Count > 0)
            {
              // for each input resource
              foreach(ModuleResource ir in command.inputResources)
              {
                // consume the resource
                Lib.RequestResource(vessel, ir.name, ir.rate * TimeWarp.fixedDeltaTime);
              }
            }
          }
          // solar panel
          else if (module.moduleName == "ModuleDeployableSolarPanel")
          {
            // determine if extended
            bool extended = module.moduleValues.GetValue("stateString") == ModuleDeployableSolarPanel.panelStates.EXTENDED.ToString();

            // if in sunlight and extended
            if (info.sunlight && extended)
            {
              // get module from prefab
              ModuleDeployableSolarPanel panel = part_prefab.Modules.GetModules<ModuleDeployableSolarPanel>()[0];

              // produce electric charge
              Lib.RequestResource(vessel, "ElectricCharge", -PanelOutput(vessel, part, panel, info.sun_dir, info.sun_dist, atmo_factor) * TimeWarp.fixedDeltaTime * Malfunction.Penalty(part));
            }
          }
          // generator
          // note: assume generators require all input
          else if (module.moduleName == "ModuleGenerator")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("generatorIsActive"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleGenerator generator = part_prefab.Modules.GetModules<ModuleGenerator>()[0];

              // determine if vessel is full of all output resources
              bool full = true;
              foreach(var or in generator.outputList)
              {
                double amount = Lib.GetResourceAmount(vessel, or.name);
                double capacity = Lib.GetResourceCapacity(vessel, or.name);
                double perc = capacity > 0.0 ? amount / capacity : 0.0;
                full &= (perc >= 1.0 - double.Epsilon);
              }

              // if not full
              if (!full)
              {
                // calculate worst required resource percentual
                double worst_input = 1.0;
                foreach(var ir in generator.inputList)
                {
                  double required = ir.rate * TimeWarp.fixedDeltaTime;
                  double amount = Lib.GetResourceAmount(vessel, ir.name);
                  worst_input = Math.Min(worst_input, amount / required);
                }

                // for each input resource
                foreach(var ir in generator.inputList)
                {
                  // consume the resource
                  Lib.RequestResource(vessel, ir.name, ir.rate * worst_input * TimeWarp.fixedDeltaTime);
                }

                // for each output resource
                foreach(var or in generator.outputList)
                {
                  // produce the resource
                  Lib.RequestResource(vessel, or.name, -or.rate * worst_input * TimeWarp.fixedDeltaTime * Malfunction.Penalty(part));
                }
              }
            }
          }
          // converter
          // note: support multiple resource converters
          // note: ignore stock temperature mechanic of converters
          // note: ignore autoshutdown
          // note: ignore crew experience bonus (seem that stock ignore it too)
          // note: 'undo' stock behaviour by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)
          // note: support PlanetaryBaseSystem converters
          // note: support NearFuture reactors
          else if (module.moduleName == "ModuleResourceConverter" || module.moduleName == "ModuleKPBSConverter" || module.moduleName == "FissionReactor")
          {
            // get module from prefab
            ModuleResourceConverter converter = part_prefab.Modules.GetModules<ModuleResourceConverter>()[converter_index++];

            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              // determine if vessel is full of all output resources
              bool full = true;
              foreach(var or in converter.outputList)
              {
                double amount = Lib.GetResourceAmount(vessel, or.ResourceName);
                double capacity = Lib.GetResourceCapacity(vessel, or.ResourceName);
                double perc = capacity > 0.0 ? amount / capacity : 0.0;
                full &= (perc >= converter.FillAmount - double.Epsilon);
              }

              // if not full
              if (!full)
              {
                // calculate worst required resource percentual
                double worst_input = 1.0;
                foreach(var ir in converter.inputList)
                {
                  double required = ir.Ratio * TimeWarp.fixedDeltaTime;
                  double amount = Lib.GetResourceAmount(vessel, ir.ResourceName);
                  worst_input = Math.Min(worst_input, amount / required);
                }

                // for each input resource
                foreach(var ir in converter.inputList)
                {
                  // consume the resource
                  Lib.RequestResource(vessel, ir.ResourceName, ir.Ratio * worst_input * TimeWarp.fixedDeltaTime);
                }

                // for each output resource
                foreach(var or in converter.outputList)
                {
                  // produce the resource
                  Lib.RequestResource(vessel, or.ResourceName, -or.Ratio * worst_input * TimeWarp.fixedDeltaTime * Malfunction.Penalty(part));
                }
              }

              // undo stock behaviour by forcing last_update_time to now
              module.moduleValues.SetValue("lastUpdateTime", Planetarium.GetUniversalTime().ToString());
            }
          }
          // drill
          // note: ignore stock temperature mechanic of harvesters
          // note: ignore autoshutdown
          // note: ignore depletion (stock seem to do the same)
          // note: 'undo' stock behaviour by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)
          else if (module.moduleName == "ModuleResourceHarvester")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleResourceHarvester harvester = part_prefab.Modules.GetModules<ModuleResourceHarvester>()[0];

              // [disabled] reason: not working
              // deduce crew bonus
              /*double experience_bonus = 0.0;
              if (harvester.UseSpecialistBonus)
              {
                foreach(ProtoCrewMember c in vessel.protoVessel.GetVesselCrew())
                {
                  experience_bonus = Math.Max(experience_bonus, (c.trait == harvester.Specialty) ? (double)c.experienceLevel : 0.0);
                }
              }*/
              const double crew_bonus = 1.0; //harvester.SpecialistBonusBase + (experience_bonus + 1.0) * harvester.SpecialistEfficiencyFactor;

              // detect amount of ore in the ground
              AbundanceRequest request = new AbundanceRequest
              {
                Altitude = vessel.altitude,
                BodyId = vessel.mainBody.flightGlobalsIndex,
                CheckForLock = false,
                Latitude = vessel.latitude,
                Longitude = vessel.longitude,
                ResourceType = (HarvestTypes)harvester.HarvesterType,
                ResourceName = harvester.ResourceName
              };
              double abundance = ResourceMap.Instance.GetAbundance(request);

              // if there is actually something (should be if active when unloaded)
              if (abundance > harvester.HarvestThreshold)
              {
                // calculate worst required resource percentual
                double worst_input = 1.0;
                foreach(var ir in harvester.inputList)
                {
                  double required = ir.Ratio * TimeWarp.fixedDeltaTime;
                  double amount = Lib.GetResourceAmount(vessel, ir.ResourceName);
                  worst_input = Math.Min(worst_input, amount / required);
                }

                // for each input resource
                foreach(var ir in harvester.inputList)
                {
                  // consume the resource
                  Lib.RequestResource(vessel, ir.ResourceName, ir.Ratio * worst_input * TimeWarp.fixedDeltaTime);
                }

                // determine resource produced
                double res = abundance * harvester.Efficiency * crew_bonus * worst_input * Malfunction.Penalty(part);

                // accumulate ore
                Lib.RequestResource(vessel, harvester.ResourceName, -res * TimeWarp.fixedDeltaTime);
              }

              // undo stock behaviour by forcing last_update_time to now
              module.moduleValues.SetValue("lastUpdateTime", Planetarium.GetUniversalTime().ToString());
            }
          }
          // asteroid drill
          // note: untested
          // note: ignore stock temperature mechanic of asteroid drills
          // note: ignore autoshutdown
          // note: 'undo' stock behaviour by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)
          else if (module.moduleName == "ModuleAsteroidDrill")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleAsteroidDrill asteroid_drill = part_prefab.Modules.GetModules<ModuleAsteroidDrill>()[0];

              // [disabled] reason: not working
              // deduce crew bonus
              /*double experience_bonus = 0.0;
              if (asteroid_drill.UseSpecialistBonus)
              {
                foreach(ProtoCrewMember c in vessel.protoVessel.GetVesselCrew())
                {
                  experience_bonus = Math.Max(experience_bonus, (c.trait == asteroid_drill.Specialty) ? (double)c.experienceLevel : 0.0);
                }
              }*/
              const double crew_bonus = 1.0; //asteroid_drill.SpecialistBonusBase + (experience_bonus + 1.0) * asteroid_drill.SpecialistEfficiencyFactor;

              // get asteroid data
              ProtoPartModuleSnapshot asteroid_info = null;
              ProtoPartModuleSnapshot asteroid_resource = null;
              foreach(ProtoPartSnapshot p in vessel.protoVessel.protoPartSnapshots)
              {
                if (asteroid_info == null) asteroid_info = p.modules.Find(k => k.moduleName == "ModuleAsteroidInfo");
                if (asteroid_resource == null) asteroid_resource = p.modules.Find(k => k.moduleName == "ModuleAsteroidResource");
              }

              // if there is actually an asteroid attached to this active asteroid drill (it should)
              if (asteroid_info != null && asteroid_resource != null)
              {
                // get some data
                double mass_threshold = Convert.ToDouble(asteroid_info.moduleValues.GetValue("massThresholdVal"));
                double mass = Convert.ToDouble(asteroid_info.moduleValues.GetValue("currentMassVal"));
                double abundance = Convert.ToDouble(asteroid_resource.moduleValues.GetValue("abundance"));
                string res_name = asteroid_resource.moduleValues.GetValue("resourceName");
                double res_density = PartResourceLibrary.Instance.GetDefinition(res_name).density;

                // if asteroid isn't depleted
                if (mass > mass_threshold && abundance > double.Epsilon)
                {
                  // consume EC
                  double ec_required = asteroid_drill.PowerConsumption * TimeWarp.fixedDeltaTime;
                  double ec_consumed = Lib.RequestResource(vessel, "ElectricCharge", ec_required);
                  double ec_ratio = ec_consumed / ec_required;

                  // determine resource extracted
                  double res_amount = abundance * asteroid_drill.Efficiency * crew_bonus * ec_ratio * TimeWarp.fixedDeltaTime;

                  // produce mined resource
                  Lib.RequestResource(vessel, res_name, -res_amount);

                  // consume asteroid mass
                  asteroid_info.moduleValues.SetValue("currentMassVal", (mass - res_density * res_amount).ToString());
                }
              }

              // undo stock behaviour by forcing last_update_time to now
              module.moduleValues.SetValue("lastUpdateTime", Planetarium.GetUniversalTime().ToString());
            }
          }
          // science lab
          // note: we are only simulating the EC consumption
          // note: there is no easy way to 'stop' the lab when there isn't enough EC
          else if (module.moduleName == "ModuleScienceConverter")
          {
            // get module from prefab
            ModuleScienceConverter lab = part_prefab.Modules.GetModules<ModuleScienceConverter>()[0];

            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              Lib.RequestResource(vessel, "ElectricCharge", lab.powerRequirement * TimeWarp.fixedDeltaTime);
            }
          }
          // SCANSAT support
          else if (module.moduleName == "SCANsat" || module.moduleName == "ModuleSCANresourceScanner")
          {
            // get ec consumption rate
            PartModule scansat = part_prefab.Modules[module.moduleName];
            double power = Lib.ReflectionValue<float>(scansat, "power");
            double ec_required = power * TimeWarp.fixedDeltaTime;
            bool is_scanning = Lib.GetProtoValue<bool>(module, "scanning");
            bool was_disabled = vd.scansat_id.Contains(part.flightID);

            // if its scanning
            if (Lib.GetProtoValue<bool>(module, "scanning"))
            {
              // consume ec
              double ec_consumed = Lib.RequestResource(vessel, "ElectricCharge", ec_required);

              // if there isn't enough ec
              if (ec_consumed < ec_required * 0.99 && ec_required > double.Epsilon)
              {
                // unregister scanner
                SCANsat.stopScanner(vessel, module, part_prefab);

                // remember disabled scanner
                vd.scansat_id.Add(part.flightID);

                // give the user some feedback
                if (DB.VesselData(vessel.id).cfg_ec == 1)
                  Message.Post("SCANsat sensor was disabled on <b>" + vessel.vesselName + "</b>");
              }
            }
            // if it was disabled
            else if (vd.scansat_id.Contains(part.flightID))
            {
              // if there is enough ec
              double ec_amount = Lib.GetResourceAmount(vessel, "ElectricCharge");
              double ec_capacity = Lib.GetResourceCapacity(vessel, "ElectricCharge");
              if (ec_capacity > double.Epsilon && ec_amount / ec_capacity > 0.25) //< re-enable at 25% EC
              {
                // re-enable the scanner
                SCANsat.resumeScanner(vessel, module, part_prefab);

                // give the user some feedback
                if (DB.VesselData(vessel.id).cfg_ec == 1)
                  Message.Post("SCANsat sensor resumed operations on <b>" + vessel.vesselName + "</b>");
              }
            }

            // forget active scanners
            if (Lib.GetProtoValue<bool>(module, "scanning")) vd.scansat_id.Remove(part.flightID);
          }
          // NearFutureSolar support
          // note: we assume deployed, this is a current limitation
          else if (module.moduleName == "ModuleCurvedSolarPanel")
          {
            // if in sunlight
            if (info.sunlight)
            {
              PartModule curved_panel = part_prefab.Modules[module.moduleName];
              double output = CurvedPanelOutput(vessel, part, part_prefab, curved_panel, info.sun_dir, info.sun_dist, atmo_factor) * Malfunction.Penalty(part);
              Lib.RequestResource(vessel, "ElectricCharge", -output * TimeWarp.fixedDeltaTime);
            }
          }
          // NearFutureElectrical support
          // note: fission generator ignore heat
          // note: radioisotope generator doesn't support easy mode
          else if (module.moduleName == "FissionGenerator")
          {
            PartModule generator = part_prefab.Modules[module.moduleName];
            double power = Lib.ReflectionValue<float>(generator, "PowerGeneration");

            // get fission reactor tweakable, will default to 1.0 for other modules
            var reactor = part.modules.Find(k => k.moduleName == "FissionReactor");
            double tweakable = reactor == null ? 1.0 : Lib.ConfigValue(reactor.moduleValues, "CurrentPowerPercent", 100.0) * 0.01;
            Lib.RequestResource(vessel, "ElectricCharge", -power * tweakable * TimeWarp.fixedDeltaTime);
          }
          else if (module.moduleName == "ModuleRadioisotopeGenerator")
          {
            double mission_time = vessel.missionTime / (3600.0 * Lib.HoursInDay() * Lib.DaysInYear());
            PartModule generator = part_prefab.Modules[module.moduleName];
            double half_life = Lib.ReflectionValue<float>(generator, "HalfLife");
            double remaining = Math.Pow(2.0, (-mission_time) / half_life);
            double power = Lib.ReflectionValue<float>(generator, "BasePower");
            Lib.RequestResource(vessel, "ElectricCharge", -power * remaining * TimeWarp.fixedDeltaTime);
          }
          // KERBALISM modules
          else if (module.moduleName == "Scrubber") { Scrubber.BackgroundUpdate(vessel, part.flightID); }
          else if (module.moduleName == "Greenhouse") { Greenhouse.BackgroundUpdate(vessel, part.flightID); }
          else if (module.moduleName == "GravityRing") { GravityRing.BackgroundUpdate(vessel, part.flightID); }
          else if (module.moduleName == "Malfunction") { Malfunction.BackgroundUpdate(vessel, part.flightID); }
        }
      }
    }
  }
Esempio n. 11
0
  // called at every simulation step
  public void FixedUpdate()
  {
    // do nothing if paused
    if (Lib.IsPaused()) return;

    // do nothing if DB isn't ready
    if (!DB.Ready()) return;

    // for each vessel
    foreach(Vessel vessel in FlightGlobals.Vessels)
    {
      // skip invalid vessels
      if (!Lib.IsVessel(vessel)) continue;

      // skip loaded vessels
      if (vessel.loaded) continue;

      // get vessel info from the cache
      vessel_info info = Cache.VesselInfo(vessel);

      // calculate atmospheric factor (proportion of flux not blocked by atmosphere)
      double atmo_factor = Sim.AtmosphereFactor(vessel.mainBody, info.position, info.sun_dir);

      // for each part
      foreach(ProtoPartSnapshot part in vessel.protoVessel.protoPartSnapshots)
      {
        // get part prefab (required for module properties)
        Part part_prefab = PartLoader.getPartInfoByName(part.partName).partPrefab;

        // store index of ModuleResourceConverter to process
        // rationale: a part can contain multiple resource converters
        int converter_index = 0;

        // for each module
        foreach(ProtoPartModuleSnapshot module in part.modules)
        {
          // command module
          if (module.moduleName == "ModuleCommand")
          {
            // get module from prefab
            ModuleCommand command = part_prefab.Modules.GetModules<ModuleCommand>()[0];

            // do not consume if this is a MCM with no crew
            // rationale: for consistency, the game doesn't consume resources for MCM without crew in loaded vessels
            //            this make some sense: you left a vessel with some battery and nobody on board, you expect it to not consume EC
            if (command.minimumCrew == 0 || part.protoModuleCrew.Count > 0)
            {
              // for each input resource
              foreach(ModuleResource ir in command.inputResources)
              {
                // consume the resource
                Lib.RequestResource(vessel, ir.name, ir.rate * TimeWarp.fixedDeltaTime);
              }
            }
          }
          // solar panel
          else if (module.moduleName == "ModuleDeployableSolarPanel")
          {
            // determine if extended
            bool extended = module.moduleValues.GetValue("stateString") == ModuleDeployableSolarPanel.panelStates.EXTENDED.ToString();

            // if in sunlight and extended
            if (info.sunlight && extended)
            {
              // get module from prefab
              ModuleDeployableSolarPanel panel = part_prefab.Modules.GetModules<ModuleDeployableSolarPanel>()[0];

              // produce electric charge
              Lib.RequestResource(vessel, "ElectricCharge", -PanelOutput(vessel, part, panel, info.sun_dir, info.sun_dist, atmo_factor) * TimeWarp.fixedDeltaTime * Malfunction.Penalty(part));
            }
          }
          // generator
          // note: assume generators require all input
          else if (module.moduleName == "ModuleGenerator")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("generatorIsActive"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleGenerator generator = part_prefab.Modules.GetModules<ModuleGenerator>()[0];

              // determine if vessel is full of all output resources
              bool full = true;
              foreach(var or in generator.outputList)
              {
                double amount = Lib.GetResourceAmount(vessel, or.name);
                double capacity = Lib.GetResourceCapacity(vessel, or.name);
                double perc = capacity > 0.0 ? amount / capacity : 0.0;
                full &= (perc >= 1.0 - double.Epsilon);
              }

              // if not full
              if (!full)
              {
                // calculate worst required resource percentual
                double worst_input = 1.0;
                foreach(var ir in generator.inputList)
                {
                  double required = ir.rate * TimeWarp.fixedDeltaTime;
                  double amount = Lib.GetResourceAmount(vessel, ir.name);
                  worst_input = Math.Min(worst_input, amount / required);
                }

                // for each input resource
                foreach(var ir in generator.inputList)
                {
                  // consume the resource
                  Lib.RequestResource(vessel, ir.name, ir.rate * worst_input * TimeWarp.fixedDeltaTime);
                }

                // for each output resource
                foreach(var or in generator.outputList)
                {
                  // produce the resource
                  Lib.RequestResource(vessel, or.name, -or.rate * worst_input * TimeWarp.fixedDeltaTime * Malfunction.Penalty(part));
                }
              }
            }
          }
          // converter
          // note: support multiple resource converters
          // note: ignore stock temperature mechanic of converters
          // note: ignore autoshutdown
          // note: ignore crew experience bonus (seem that stock ignore it too)
          // note: 'undo' stock behaviour by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)
          else if (module.moduleName == "ModuleResourceConverter")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleResourceConverter converter = part_prefab.Modules.GetModules<ModuleResourceConverter>()[converter_index++];

              // determine if vessel is full of all output resources
              bool full = true;
              foreach(var or in converter.outputList)
              {
                double amount = Lib.GetResourceAmount(vessel, or.ResourceName);
                double capacity = Lib.GetResourceCapacity(vessel, or.ResourceName);
                double perc = capacity > 0.0 ? amount / capacity : 0.0;
                full &= (perc >= converter.FillAmount - double.Epsilon);
              }

              // if not full
              if (!full)
              {
                // calculate worst required resource percentual
                double worst_input = 1.0;
                foreach(var ir in converter.inputList)
                {
                  double required = ir.Ratio * TimeWarp.fixedDeltaTime;
                  double amount = Lib.GetResourceAmount(vessel, ir.ResourceName);
                  worst_input = Math.Min(worst_input, amount / required);
                }

                // for each input resource
                foreach(var ir in converter.inputList)
                {
                  // consume the resource
                  Lib.RequestResource(vessel, ir.ResourceName, ir.Ratio * worst_input * TimeWarp.fixedDeltaTime);
                }

                // for each output resource
                foreach(var or in converter.outputList)
                {
                  // produce the resource
                  Lib.RequestResource(vessel, or.ResourceName, -or.Ratio * worst_input * TimeWarp.fixedDeltaTime * Malfunction.Penalty(part));
                }
              }

              // undo stock behaviour by forcing last_update_time to now
              module.moduleValues.SetValue("lastUpdateTime", Planetarium.GetUniversalTime().ToString());
            }
          }
          // drill
          // note: ignore stock temperature mechanic of harvesters
          // note: ignore autoshutdown
          // note: ignore depletion (stock seem to do the same)
          // note: 'undo' stock behaviour by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)
          else if (module.moduleName == "ModuleResourceHarvester")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleResourceHarvester harvester = part_prefab.Modules.GetModules<ModuleResourceHarvester>()[0];

              // deduce crew bonus
              double experience_bonus = 0.0;
              if (harvester.UseSpecialistBonus)
              {
                foreach(ProtoCrewMember c in vessel.protoVessel.GetVesselCrew())
                {
                  experience_bonus = Math.Max(experience_bonus, (c.trait == harvester.Specialty) ? (double)c.experienceLevel : 0.0);
                }
              }
              double crew_bonus = harvester.SpecialistBonusBase + (experience_bonus + 1.0) * harvester.SpecialistEfficiencyFactor;

              // detect amount of ore in the ground
              AbundanceRequest request = new AbundanceRequest
              {
                Altitude = vessel.altitude,
                BodyId = vessel.mainBody.flightGlobalsIndex,
                CheckForLock = false,
                Latitude = vessel.latitude,
                Longitude = vessel.longitude,
                ResourceType = (HarvestTypes)harvester.HarvesterType,
                ResourceName = harvester.ResourceName
              };
              double abundance = ResourceMap.Instance.GetAbundance(request);

              // if there is actually something (should be if active when unloaded)
              if (abundance > harvester.HarvestThreshold)
              {
                // calculate worst required resource percentual
                double worst_input = 1.0;
                foreach(var ir in harvester.inputList)
                {
                  double required = ir.Ratio * TimeWarp.fixedDeltaTime;
                  double amount = Lib.GetResourceAmount(vessel, ir.ResourceName);
                  worst_input = Math.Min(worst_input, amount / required);
                }

                // for each input resource
                foreach(var ir in harvester.inputList)
                {
                  // consume the resource
                  Lib.RequestResource(vessel, ir.ResourceName, ir.Ratio * worst_input * TimeWarp.fixedDeltaTime);
                }

                // determine resource produced
                double res = abundance * harvester.Efficiency * crew_bonus * worst_input * Malfunction.Penalty(part);

                // accumulate ore
                Lib.RequestResource(vessel, harvester.ResourceName, -res * TimeWarp.fixedDeltaTime);
              }

              // undo stock behaviour by forcing last_update_time to now
              module.moduleValues.SetValue("lastUpdateTime", Planetarium.GetUniversalTime().ToString());
            }
          }
          // asteroid drill
          // note: untested
          // note: ignore stock temperature mechanic of asteroid drills
          // note: ignore autoshutdown
          // note: 'undo' stock behaviour by forcing lastUpdateTime to now (to minimize overlapping calculations from this and stock post-facto simulation)
          else if (module.moduleName == "ModuleAsteroidDrill")
          {
            // determine if active
            bool activated = Convert.ToBoolean(module.moduleValues.GetValue("IsActivated"));

            // if active
            if (activated)
            {
              // get module from prefab
              ModuleAsteroidDrill asteroid_drill = part_prefab.Modules.GetModules<ModuleAsteroidDrill>()[0];

              // deduce crew bonus
              double experience_bonus = 0.0;
              if (asteroid_drill.UseSpecialistBonus)
              {
                foreach(ProtoCrewMember c in vessel.protoVessel.GetVesselCrew())
                {
                  experience_bonus = Math.Max(experience_bonus, (c.trait == asteroid_drill.Specialty) ? (double)c.experienceLevel : 0.0);
                }
              }
              double crew_bonus = asteroid_drill.SpecialistBonusBase + (experience_bonus + 1.0) * asteroid_drill.SpecialistEfficiencyFactor;

              // get asteroid data
              ProtoPartModuleSnapshot asteroid_info = null;
              ProtoPartModuleSnapshot asteroid_resource = null;
              foreach(ProtoPartSnapshot p in vessel.protoVessel.protoPartSnapshots)
              {
                if (asteroid_info == null) asteroid_info = p.modules.Find(k => k.moduleName == "ModuleAsteroidInfo");
                if (asteroid_resource == null) asteroid_resource = p.modules.Find(k => k.moduleName == "ModuleAsteroidResource");
              }

              // if there is actually an asteroid attached to this active asteroid drill (it should)
              if (asteroid_info != null && asteroid_resource != null)
              {
                // get some data
                double mass_threshold = Convert.ToDouble(asteroid_info.moduleValues.GetValue("massThresholdVal"));
                double mass = Convert.ToDouble(asteroid_info.moduleValues.GetValue("currentMassVal"));
                double abundance = Convert.ToDouble(asteroid_resource.moduleValues.GetValue("abundance"));
                string res_name = asteroid_resource.moduleValues.GetValue("resourceName");
                double res_density = PartResourceLibrary.Instance.GetDefinition(res_name).density;

                // if asteroid isn't depleted
                if (mass > mass_threshold && abundance > double.Epsilon)
                {
                  // consume EC
                  double ec_required = asteroid_drill.PowerConsumption * TimeWarp.fixedDeltaTime;
                  double ec_consumed = Lib.RequestResource(vessel, "ElectricCharge", ec_required);
                  double ec_ratio = ec_consumed / ec_required;

                  // determine resource extracted
                  double res_amount = abundance * asteroid_drill.Efficiency * crew_bonus * ec_ratio * TimeWarp.fixedDeltaTime;

                  // produce mined resource
                  Lib.RequestResource(vessel, res_name, -res_amount);

                  // consume asteroid mass
                  asteroid_info.moduleValues.SetValue("currentMassVal", (mass - res_density * res_amount).ToString());
                }
              }

              // undo stock behaviour by forcing last_update_time to now
              module.moduleValues.SetValue("lastUpdateTime", Planetarium.GetUniversalTime().ToString());
            }
          }
          // SCANSAT support (new version)
          // TODO: enable better SCANsat support
          /*else if (module.moduleName == "SCANsat" || module.moduleName == "ModuleSCANresourceScanner")
          {
            // get ec consumption rate
            PartModule scansat = part_prefab.Modules[module.moduleName];
            double power = Lib.ReflectionValue<float>(scansat, "power");
            double ec_required = power * TimeWarp.fixedDeltaTime;

            // if it was scanning
            if (SCANsat.wasScanning(module))
            {
              // if there is enough ec
              double ec_amount = Lib.GetResourceAmount(vessel, "ElectricCharge");
              double ec_capacity = Lib.GetResourceCapacity(vessel, "ElectricCharge");
              if (ec_capacity > double.Epsilon && ec_amount / ec_capacity > 0.15) //< re-enable at 15% EC
              {
                // re-enable the scanner
                SCANsat.resumeScanner(vessel, module, part_prefab);

                // give the user some feedback
                if (DB.VesselData(vessel.id).cfg_ec == 1)
                  Message.Post(Severity.relax, "SCANsat> sensor on <b>" + vessel.vesselName + "</b> resumed operations", "we got enough ElectricCharge");
              }
            }

            // if it is scanning
            if (SCANsat.isScanning(module))
            {
              // consume ec
              double ec_consumed = Lib.RequestResource(vessel, "ElectricCharge", ec_required);

              // if there isn't enough ec
              if (ec_consumed < ec_required * 0.99 && ec_required > double.Epsilon)
              {
                // unregister scanner, and remember it
                SCANsat.stopScanner(vessel, module, part_prefab);

                // give the user some feedback
                if (DB.VesselData(vessel.id).cfg_ec == 1)
                  Message.Post(Severity.warning, "SCANsat sensor was disabled on <b>" + vessel.vesselName + "</b>", "for lack of ElectricCharge");
              }
            }
          }*/
          // SCANSAT support (old version)
          // note: this one doesn't support re-activation, is a bit slower and less clean
          //       waiting for DMagic to fix a little bug
          else if (module.moduleName == "SCANsat" || module.moduleName == "ModuleSCANresourceScanner")
          {
            // determine if scanning
            bool scanning = Convert.ToBoolean(module.moduleValues.GetValue("scanning"));

            // consume ec
            if (scanning)
            {
              // get ec consumption
              PartModule scansat = part_prefab.Modules[module.moduleName];
              double power = Lib.ReflectionValue<float>(scansat, "power");

              // consume ec
              double ec_required = power * TimeWarp.fixedDeltaTime;
              double ec_consumed = Lib.RequestResource(vessel, "ElectricCharge", ec_required);

              // if there isn't enough ec
              if (ec_consumed < ec_required * 0.99 && ec_required > double.Epsilon)
              {
                // unregister scanner using reflection
                foreach(var a in AssemblyLoader.loadedAssemblies)
                {
                  if (a.name == "SCANsat")
                  {
                    Type controller_type = a.assembly.GetType("SCANsat.SCANcontroller");
                    System.Object controller = controller_type.GetProperty("controller", BindingFlags.Public | BindingFlags.Static).GetValue(null, null);
                    controller_type.InvokeMember("removeVessel", BindingFlags.InvokeMethod | BindingFlags.NonPublic | BindingFlags.Instance, null, controller, new System.Object[]{vessel});
                  }
                }

                // disable scanning
                module.moduleValues.SetValue("scanning", false.ToString());

                // give the user some feedback
                if (DB.VesselData(vessel.id).cfg_ec == 1)
                  Message.Post(Severity.warning, "SCANsat sensor was disabled on <b>" + vessel.vesselName + "</b>", "for lack of ElectricCharge");
              }
            }
          }
          // NearFutureSolar support
          // note: we assume deployed, this is a current limitation
          else if (module.moduleName == "ModuleCurvedSolarPanel")
          {
            // [unused] determine if extended
            //string state = module.moduleValues.GetValue("SavedState");
            //bool extended = state == ModuleDeployableSolarPanel.panelStates.EXTENDED.ToString();

            // if in sunlight
            if (info.sunlight)
            {
              // produce electric charge
              double output = CurvedPanelOutput(vessel, part, part_prefab, info.sun_dir, info.sun_dist, atmo_factor) * Malfunction.Penalty(part);
              Lib.RequestResource(vessel, "ElectricCharge", -output * TimeWarp.fixedDeltaTime);
            }
          }
          // KERBALISM modules
          else if (module.moduleName == "Scrubber") { Scrubber.BackgroundUpdate(vessel, part.flightID); }
          else if (module.moduleName == "Greenhouse") { Greenhouse.BackgroundUpdate(vessel, part.flightID); }
          else if (module.moduleName == "Malfunction") { Malfunction.BackgroundUpdate(vessel, part.flightID); }
        }
      }
    }
  }