Esempio n. 1
0
        // Algorithm specific implementation of the path planning
        protected override void DoPathPlanning()
        {
            // Take care of business without hierarchical search

            // Always use parallelization at this level no matter what

            if (!curRequest.UseEndPoint)
            {
                // For the no end point path planning requests
                // Always use CC
                PathPlanningRequest newRequest = curRequest.DeepClone();
                newRequest.AlgToUse = AlgType.CC;
                AlgPathPlanning myAlg = new AlgCC(newRequest, mDist, mDiff, Efficiency_UB);
                lstThreads.Add(myAlg);

                // Also always use LHCGWCONV
                newRequest = curRequest.DeepClone();
                newRequest.AlgToUse = AlgType.LHCGWCONV;
                RtwMatrix mDistCopy1 = mDist.Clone();
                RtwMatrix mDiffCopy1 = mDiff.Clone();
                myAlg = new AlgGlobalWarming(newRequest, ModeCount, mDistCopy1, mDiffCopy1, Efficiency_UB);
                lstThreads.Add(myAlg);

                // TopTwo works best when there are two modes (n>=2)
                if (ModeCount == 2)
                {
                    newRequest = curRequest.DeepClone();
                    newRequest.AlgToUse = AlgType.TopTwo;
                    RtwMatrix mDistCopy2 = mDist.Clone();
                    RtwMatrix mDiffCopy2 = mDiff.Clone();
                    myAlg = new AlgTopTwo(newRequest, ModeCount, mModes, mDistCopy2, mDiffCopy2, Efficiency_UB);
                    lstThreads.Add(myAlg);
                }

                // Use TopN if there are more than two modes
                if (ModeCount >= 3)
                {
                    newRequest = curRequest.DeepClone();
                    newRequest.AlgToUse = AlgType.TopN;
                    if (ModeCount <= ProjectConstants.Max_N)
                    {
                        newRequest.TopN = ModeCount;
                    }
                    // This is really hierarchical search
                    for (int i = 3; i < ProjectConstants.Max_N + 1; i++)
                    {
                        PathPlanningRequest newR = newRequest.DeepClone();
                        newR.TopN = i;
                        RtwMatrix mDistCopy2 = mDist.Clone();
                        RtwMatrix mDiffCopy2 = mDiff.Clone();
                        myAlg = new AlgTopN(newR, ModeCount, mModes, mDistCopy2, mDiffCopy2, Efficiency_UB);
                        lstThreads.Add(myAlg);
                    }
                }

                if (ProjectConstants.DebugMode)
                {
                    curRequest.SetLog("Running a total of " + lstThreads.Count + " path planning tasks.\n");
                }
                SpawnThreads();
            }
            else
            {

            }

            //if (HierarchicalSearch())
            //{
            //    return;
            //}
        }
Esempio n. 2
0
        // Function to actually generate seeds of various algorithms
        private bool GenerateSeeds(List<EAPath> AllPaths, PathPlanningRequest newRequest, AlgPathPlanning myAlg, int count)
        {
            for (int i = 0; i < count; i++)
            {
                switch (newRequest.AlgToUse)
                {
                    case AlgType.CC:
                        myAlg = new AlgCC(newRequest, mDist, mDiff, Efficiency_UB);
                        break;
                    case AlgType.LHCGWCONV:
                        myAlg = new AlgGlobalWarming(newRequest, ModeCount, mDist, mDiff, Efficiency_UB);
                        break;
                    case AlgType.LHCGWPF:
                        myAlg = new AlgGlobalWarming(newRequest, ModeCount, mDist, mDiff, Efficiency_UB);
                        break;
                    case AlgType.LHCRandom:
                        myAlg = new AlgLHCRandom(newRequest, mDist, mDiff, Efficiency_UB);
                        break;
                    case AlgType.Random:
                        myAlg = new AlgRandom(newRequest, mDist, mDiff, Efficiency_UB);
                        break;
                    case AlgType.TopTwoH:
                        myAlg = new AlgTopTwo(newRequest, ModeCount, mModes, mDist, mDiff, Efficiency_UB);
                        break;
                    case AlgType.TopNH:
                        myAlg = new AlgTopTwo(newRequest, ModeCount, mModes, mDist, mDiff, Efficiency_UB);
                        break;
                    default:
                        break;
                }

                DateTime startTime2 = DateTime.Now;
                myAlg.PlanPath();
                DateTime stopTime2 = DateTime.Now;
                TimeSpan duration2 = stopTime2 - startTime2;
                double RunTime2 = duration2.TotalSeconds;
                if (ProjectConstants.DebugMode)
                {
                    curRequest.SetLog("Algorithm " + newRequest.AlgToUse + " took " + RunTime2 + " seconds.\n");
                }

                EAPath eap = new EAPath();
                eap.CDF = myAlg.GetCDF();
                eap.Path.AddRange(myAlg.GetPath());
                myAlg = null;

                // Add EAPath to population
                AllPaths.Add(eap);

                // If we already have the best path, then no need to continue
                CDF = eap.CDF;
                Path = eap.Path;
                if (Math.Abs(CDF - Efficiency_UB) < 0.001)
                {
                    return true;
                }
            }
            return false;
        }
Esempio n. 3
0
        // Algorithm specific implementation of the path planning
        protected override void DoPathPlanning()
        {
            AlgPathPlanning curAlg;
            AlgPathPlanning curAlgReversed;
            PathPlanningRequest curRequestReversed = curRequest.Clone();
            curRequestReversed.pStart = curRequest.pEnd;
            curRequestReversed.pEnd = curRequest.pStart;

            // Use the right algorithm
            switch (curRequest.AlgToUse)
            {
                case AlgType.CC_E:
                    curAlg = new AlgCC_E(curRequest, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgCC_E(curRequestReversed, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.LHCGWCONV_E:
                    curAlg = new AlgGlobalWarming(curRequest, ModeCount, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgGlobalWarming(curRequestReversed, ModeCount, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.LHCGWPF_E:
                    curAlg = new AlgGlobalWarming(curRequest, ModeCount, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgGlobalWarming(curRequestReversed, ModeCount, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.LHCRandom_E:
                    curAlg = new AlgLHCRandom(curRequest, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgLHCRandom(curRequestReversed, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.Random_E:
                    curAlg = new AlgRandom(curRequest, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgRandom(curRequestReversed, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.CONV_E:
                    curAlg = new AlgGlobalWarming(curRequest, ModeCount, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgGlobalWarming(curRequestReversed, ModeCount, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.PF_E:
                    curAlg = new AlgPFLooper(curRequest, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgPFLooper(curRequestReversed, mDist, mDiff, Efficiency_UB);
                    break;
                case AlgType.EA_E:
                    curAlg = new AlgEA_E(curRequest, ModeCount, mDist, mDiff, Efficiency_UB);
                    curAlgReversed = new AlgEA_E(curRequestReversed, ModeCount, mDist, mDiff, Efficiency_UB);
                    break;
                default:
                    curAlg = null;
                    curAlgReversed = null;
                    break;
            }

            curAlg.PlanPath();
            curAlgReversed.PlanPath();

            if (curAlg.GetCDF() >= curAlgReversed.GetCDF())
            {
                CDF = curAlg.GetCDF();
                Path = curAlg.GetPath();
            }
            else
            {
                CDF = curAlgReversed.GetCDF();
                Path = curAlgReversed.GetPath();
                Path.Reverse();
            }
        }
Esempio n. 4
0
        // When the test button is pressed (Count how many modes)
        private void btnTest_Click(object sender, EventArgs e)
        {
            #region Test Mode Count
            //DateTime startTime = DateTime.Now;
            //CountDistModes myCount;
            //if (chkUseDiff.Checked)
            //{
            //    RtwMatrix mDistReachable = test.DistMap.Clone();
            //    RtwMatrix mDiffReachable = test.DiffMap.Clone();

            //    RtwMatrix mRealModes = new RtwMatrix(CurDiffMap.Rows, CurDiffMap.Columns);
            //    for (int i = 0; i < mRealModes.Rows; i++)
            //    {
            //        for (int j = 0; j < mRealModes.Columns; j++)
            //        {
            //            mRealModes[i, j] = mDistReachable[i, j] *
            //                (float)test.DiffRates[Convert.ToInt32(mDiffReachable[i, j])];
            //        }
            //    }
            //    myCount = new CountDistModes(mRealModes);

            //    // Debug code: Showing the product of dist and diff
            //    frmMap mapReal = new frmMap();
            //    Bitmap CurBMPReal = new Bitmap(mRealModes.Columns, mRealModes.Rows);
            //    ImgLib.MatrixToImage(ref mRealModes, ref CurBMPReal);
            //    mapReal.Text = "Real probability distribution with respect to difficulty map";
            //    mapReal.setImage(CurBMPReal);
            //    mapReal.Show();
            //    mapReal.resetImage();
            //}
            //else
            //{
            //    myCount = new CountDistModes(CurDistMap);
            //}

            //Log(myCount.GetCount().ToString() + "\n");
            //DateTime stopTime = DateTime.Now;
            //TimeSpan duration = stopTime - startTime;
            //Log("Computation took " + duration.ToString() + " seconds.\n");
            //// Show mode nodes
            //RtwMatrix myModes = myCount.GetModes().Clone();
            //for (int i = 0; i < myModes.Rows; i++)
            //{
            //    for (int j = 0; j < myModes.Columns; j++)
            //    {
            //        if (myModes[i, j] > 0)
            //        {
            //            myModes[i, j] = 255;
            //        }
            //    }
            //}
            //// Convert matrix to image
            //Bitmap CurBMP = new Bitmap(myModes.Columns, myModes.Rows);
            //ImgLib.MatrixToImage(ref myModes, ref CurBMP);
            //// Showing map in map form
            //frmMap myModesForm = new frmMap(this);
            //myModesForm.Text = "Modes Map";
            //myModesForm.setImage(CurBMP);
            //myModesForm.Show();

            //myCount = null;
            #endregion

            #region Test permutation

            //int[] intInput = { 1, 2, 3, 4};
            //Log(ShowPermutations<int>(intInput, 3));

            //string[] stringInput = { "Hello", "World", "Foo" };
            //Log(ShowPermutations<string>(stringInput, 2));

            #endregion

            #region Test MATLAB
            //////////////////////
            //// Input Parameters
            //////////////////////

            //// create an array ar for the real part of "a"
            //System.Array ar = new double[2];
            //ar.SetValue(11, 0);
            //ar.SetValue(12, 1);

            //// create an array ai for the imaginary part of "a"
            //System.Array ai = new double[2];
            //ai.SetValue(1, 0);
            //ai.SetValue(2, 1);

            //// create an array br for the real part of "b"
            //System.Array br = new double[2];
            //br.SetValue(21, 0);
            //br.SetValue(22, 1);

            //// create an array bi for the imaginary part of "b"
            //System.Array bi = new double[2];
            //bi.SetValue(3, 0);
            //bi.SetValue(4, 1);

            ///////////////////////
            //// Output Parameters
            ///////////////////////

            //// initialize variables for return value from ML
            //System.Array cr = new double[2];
            //System.Array ci = new double[2];
            //System.Array dr = new double[2];
            //System.Array di = new double[2];

            //////////////////////////
            //// Call MATLAB function
            //////////////////////////
            //// call appropriate function/method based on Mode
            //// use MATLAB engine
            //UseEngine(ar, ai, br, bi, ref cr, ref ci, ref dr, ref di);

            //Log("ar = " + ar.GetValue(0).ToString() + " " + ar.GetValue(1).ToString() + "\n");
            //Log("ai = " + ai.GetValue(0).ToString() + " " + ai.GetValue(1).ToString() + "\n");
            //Log("br = " + br.GetValue(0).ToString() + " " + br.GetValue(1).ToString() + "\n");
            //Log("bi = " + bi.GetValue(0).ToString() + " " + bi.GetValue(1).ToString() + "\n");
            //Log("cr = " + cr.GetValue(0).ToString() + " " + cr.GetValue(1).ToString() + "\n");
            //Log("ci = " + ci.GetValue(0).ToString() + " " + ci.GetValue(1).ToString() + "\n");
            //Log("dr = " + dr.GetValue(0).ToString() + " " + dr.GetValue(1).ToString() + "\n");
            //Log("di = " + di.GetValue(0).ToString() + " " + di.GetValue(1).ToString() + "\n");
            #endregion

            #region Test MATH.NET EVD

            //DenseMatrix m = new DenseMatrix(new[,] { { 81.1887, -18.4630 }, { -18.4630, 115.9033 } });
            //System.Numerics.Complex[] d = m.Evd().EigenValues().ToArray();
            //double a = d[0].Real;
            //double b = d[1].Real;
            //Log(a + " " + b);

            #endregion

            #region Test Arrays

            //int n = 3;
            //Array arrModes = new double[n];
            //Array arrMUs = new double[n, 2];
            //Array arrSigmaXSigmaY = new double[n];

            //for (int i = 0; i < n; i++)
            //{
            //    // Means
            //    arrMUs.SetValue(21, i, 0);
            //    arrMUs.SetValue(22, i, 1);
            //}

            #endregion

            #region Compute Efficiency with existing path

            #region Sanity Check
            // Make sure maps are loaded
            if (chkUseDist.Checked && CurDistMap == null)
            {
                System.Windows.Forms.MessageBox.Show("Please load a probability distribution map first!");
                return;
            }
            if (chkUseDiff.Checked && CurDiffMap == null)
            {
                System.Windows.Forms.MessageBox.Show("Please load a task-difficulty map first!");
                return;
            }

            // Make sure distribution map and task-difficulty map have same size
            if (chkUseDiff.Checked && chkUseDist.Checked)
            {
                if (CurDistMap.Rows != CurDiffMap.Rows || CurDistMap.Columns != CurDiffMap.Columns)
                {
                    System.Windows.Forms.MessageBox.Show("Please make sure the distribution map and the " +
                    "task-difficulty map must be the same size!");
                    return;
                }
            }

            // Use default distribution map or task-difficulty map if only one is checked
            if (chkUseDiff.Checked && !chkUseDist.Checked)
            {
                CurDistMap = new RtwMatrix(CurDiffMap.Rows, CurDiffMap.Columns);
            }
            if (!chkUseDiff.Checked && chkUseDist.Checked)
            {
                CurDiffMap = new RtwMatrix(CurDistMap.Rows, CurDistMap.Columns);
            }

            #endregion

            // Create request object
            PathPlanningRequest newRequest = new PathPlanningRequest();

            #region Setting Request Object Properties

            newRequest.UseDistributionMap = chkUseDist.Checked;
            newRequest.UseTaskDifficultyMap = chkUseDiff.Checked;
            newRequest.UseHierarchy = chkHierarchy.Checked;
            newRequest.UseCoarseToFineSearch = chkCoaseToFine.Checked;
            newRequest.UseParallelProcessing = chkParallel.Checked;
            if (rbtnFixWing.Checked)
            {
                newRequest.VehicleType = UAVType.FixWing;
            }
            if (rbtnCopter.Checked)
            {
                newRequest.VehicleType = UAVType.Copter;
            }
            if (rbtnFixedAmount.Checked)
            {
                newRequest.DetectionType = DType.FixAmount;
            }
            if (rbtnFixedAmountPercent.Checked)
            {
                newRequest.DetectionType = DType.FixAmountInPercentage;
            }
            if (rbtnFixedPercent.Checked)
            {
                newRequest.DetectionType = DType.FixPercentage;
            }
            newRequest.DetectionRate = Convert.ToDouble(ntxtDetectionRate.Value);
            newRequest.DistMap = CurDistMap;
            newRequest.DiffMap = CurDiffMap;
            newRequest.UseEndPoint = chkUseEndPoint.Checked;
            newRequest.T = trbFlightTime.Value;
            newRequest.pStart.column = Convert.ToInt16(ntxtSX.Value);
            newRequest.pStart.row = Convert.ToInt16(ntxtSY.Value);
            newRequest.pEnd.column = Convert.ToInt16(ntxtEX.Value);
            newRequest.pEnd.row = Convert.ToInt16(ntxtEY.Value);
            newRequest.AlgToUse = AlgType.LHCGWCONV;
            newRequest.DrawPath = chkShowPath.Checked;

            #endregion

            #region Find max task-difficulty and compute diff rates only once

            if (chkUseDiff.Checked)
            {
                newRequest.MaxDifficulty = Convert.ToInt32(CurDiffMap.MinMaxValue()[1]);
                // Set task-difficulty rates
                double[] DiffRates = new double[newRequest.MaxDifficulty + 1];
                double rate = 1.0 / (newRequest.MaxDifficulty + 1);
                for (int i = 0; i < newRequest.MaxDifficulty + 1; i++)
                {
                    DiffRates[i] = 1 - i * rate;
                }
                newRequest.DiffRates = DiffRates;
            }

            if (!newRequest.SanityCheck())
            {
                System.Windows.Forms.MessageBox.Show(newRequest.GetLog());
                return;
            }

            #endregion

            // Read in existing path using hard-coded file path
            string BAPathFileName = @"H:\Research\20 New IPPAs for Partial Detection Conference Paper\Selected Cases Maps\BAPath.csv";
            RtwMatrix BAPath = MISCLib.ReadInMap(BAPathFileName);

            #region First do reachable area (Dist and Diff)

            RtwMatrix mDistReachable;
            RtwMatrix mDiffReachable;

            if (newRequest.T < newRequest.DistMap.Rows + newRequest.DistMap.Columns)
            {
                mDistReachable = newRequest.DistMap.Clone();
                mDiffReachable = newRequest.DiffMap.Clone();
                if (!ComputeReachableArea(newRequest, mDistReachable, mDiffReachable))
                {
                    // Cannot plan path.
                    return;
                }
            }
            else
            {
                mDistReachable = newRequest.DistMap.Clone();
                mDiffReachable = newRequest.DiffMap.Clone();
            }

            #endregion

            // Then do efficiency lower bound
            ComputeEfficiencyUB myELB = new ComputeEfficiencyUB(newRequest, mDistReachable, mDiffReachable);
            double Efficiency_UB = myELB.GetEfficiency_UB();
            List<Point> TeleportPath = myELB.GetTeleportPath();
            myELB = null;

            // Creating path planning object
            AlgPathPlanning curAlg = new AlgGlobalWarming(newRequest, 1, mDistReachable, mDiffReachable, Efficiency_UB);

            // Call method to compute existing path CDF
            List<Point> Path = new List<Point>();
            for(int i=0; i<BAPath.Rows; i++)
            {
                Point p = new Point(Convert.ToInt16(BAPath[i,0]), Convert.ToInt16(BAPath[i,1]));
                Path.Add(p);
            }

            float CDF = curAlg.GetTrueCDF(Path);

            // Compute efficiency
            double Efficiency = 0;
            if (Efficiency_UB == 0)
            {
                Efficiency = 1;
            }
            else
            {
                Efficiency = CDF / Efficiency_UB;
            }

            // Compute CDF for graph
            Console.WriteLine("Print Existing Path CDF Graph:");
            curAlg.PrintCDFGraph(TeleportPath, newRequest.DistMap);
            Console.WriteLine("Print BAPath CDF Graph:");
            curAlg.PrintCDFGraph(Path, newRequest.DistMap);
            curAlg.SetPath(Path);

            // Show results
            Log("----------------------------------------------\n");
            Log("Efficiency: " + Efficiency.ToString() + "\n");
            Log("----------------------------------------------");
            Log("----------------------------------------------\n");

            #region Show path

            if (newRequest.DrawPath)
            {
                // Draw path with map remains
                Bitmap CurBMP3 = new Bitmap(mDistReachable.Columns, mDistReachable.Rows);
                ImgLib.MatrixToImage(ref mDistReachable, ref CurBMP3);
                frmMap map3 = new frmMap();
                map3.Text = "UAV trajectory and coverage";
                map3.setImage(CurBMP3);
                map3.Show();
                map3.resetImage();
                List<float> remains = curAlg.ShowCoverage();
                Color c = Color.FromArgb(255, 0, 0);
                for (int i = 0; i < Path.Count; i++)
                {
                    Point p = Path[i];
                    map3.setPointColor(p, c);
                    map3.Refresh();
                    map3.setPointColor(p, remains[i]);
                    map3.Refresh();
                }

                // Drawing real path
                MISCLib.ShowImage(MISCLib.DrawPath(Path), "Real Path");
            }

            #endregion

            #endregion
        }