Esempio n. 1
0
 public void ForData(CollationData d)
 {
     // Add all from the data, can be tailoring or base.
     if (d.Base != null)
     {
         checkTailored = -1;
     }
     data = d;
     using (IEnumerator <Trie2.Range> trieIterator = data.trie.GetEnumerator())
     {
         Trie2.Range range;
         while (trieIterator.MoveNext() && !(range = trieIterator.Current).LeadSurrogate)
         {
             EnumCnERange(range.StartCodePoint, range.EndCodePoint, range.Value, this);
         }
     }
     if (d.Base == null)
     {
         return;
     }
     // Add all from the base data but only for un-tailored code points.
     tailored.Freeze();
     checkTailored = 1;
     data          = d.Base;
     using (IEnumerator <Trie2.Range> trieIterator = data.trie.GetEnumerator())
     {
         Trie2.Range range;
         while (trieIterator.MoveNext() && !(range = trieIterator.Current).LeadSurrogate)
         {
             EnumCnERange(range.StartCodePoint, range.EndCodePoint, range.Value, this);
         }
     }
 }
        private bool LoadGroups(CollationData data)
        {
            headerLength = 1 + NUM_SPECIAL_GROUPS;
            int r0 = (CollationFastLatin.Version << 8) | headerLength;

            result.Append((char)r0);
            // The first few reordering groups should be special groups
            // (space, punct, ..., digit) followed by Latn, then Grek and other scripts.
            for (int i = 0; i < NUM_SPECIAL_GROUPS; ++i)
            {
                lastSpecialPrimaries[i] = data.GetLastPrimaryForGroup(ReorderCodes.First + i);
                if (lastSpecialPrimaries[i] == 0)
                {
                    // missing data
                    return(false);
                }
                // ICU4N: Use char instead of int to append the value to ensure ambient culture has no effect
                result.Append('0');  // reserve a slot for this group
            }

            firstDigitPrimary = data.GetFirstPrimaryForGroup(ReorderCodes.Digit);
            firstLatinPrimary = data.GetFirstPrimaryForGroup(UScript.Latin);
            lastLatinPrimary  = data.GetLastPrimaryForGroup(UScript.Latin);
            if (firstDigitPrimary == 0 || firstLatinPrimary == 0)
            {
                // missing data
                return(false);
            }
            return(true);
        }
Esempio n. 3
0
        private bool LoadGroups(CollationData data)
        {
            headerLength = 1 + NUM_SPECIAL_GROUPS;
            int r0 = (CollationFastLatin.VERSION << 8) | headerLength;

            result.Append((char)r0);
            // The first few reordering groups should be special groups
            // (space, punct, ..., digit) followed by Latn, then Grek and other scripts.
            for (int i = 0; i < NUM_SPECIAL_GROUPS; ++i)
            {
                lastSpecialPrimaries[i] = data.GetLastPrimaryForGroup(ReorderCodes.First + i);
                if (lastSpecialPrimaries[i] == 0)
                {
                    // missing data
                    return(false);
                }
                // ICU4N TODO: Check this (not sure about char data type)
                result.Append((char)0);  // reserve a slot for this group
            }

            firstDigitPrimary = data.GetFirstPrimaryForGroup(ReorderCodes.Digit);
            firstLatinPrimary = data.GetFirstPrimaryForGroup(UScript.Latin);
            lastLatinPrimary  = data.GetLastPrimaryForGroup(UScript.Latin);
            if (firstDigitPrimary == 0 || firstLatinPrimary == 0)
            {
                // missing data
                return(false);
            }
            return(true);
        }
Esempio n. 4
0
 public FCDIterCollationIterator(CollationData data, bool numeric,
                                 UCharacterIterator ui, int startIndex)
     : base(data, numeric, ui)
 {
     state   = State.IterCheckFwd;
     start   = startIndex;
     nfcImpl = data.nfcImpl;
 }
Esempio n. 5
0
 public UTF16CollationIterator(CollationData d, bool numeric, ICharSequence s, int p)
     : base(d, numeric)
 {
     seq   = s;
     start = 0;
     pos   = p;
     limit = s.Length;
 }
Esempio n. 6
0
 internal void EnsureOwnedData()
 {
     if (ownedData == null)
     {
         Normalizer2Impl nfcImpl = Norm2AllModes.GetNFCInstance().Impl;
         ownedData = new CollationData(nfcImpl);
     }
     data = ownedData;
 }
 public FCDUTF16CollationIterator(CollationData data, bool numeric, ICharSequence s, int p)
     : base(data, numeric, s, p)
 {
     rawSeq       = s;
     segmentStart = p;
     rawLimit     = s.Length;
     nfcImpl      = data.NfcImpl;
     checkDir     = 1;
 }
Esempio n. 8
0
 private void AddPrefixes(CollationData d, int c, string p, int pidx) // ICU4N specific - changed p from ICharSequence to string
 {
     using (CharsTrie.Enumerator prefixes = new CharsTrie(p, pidx).GetEnumerator())
     {
         while (prefixes.MoveNext())
         {
             var e = prefixes.Current;
             AddPrefix(d, e.Chars, c, e.Value);
         }
     }
 }
Esempio n. 9
0
        internal void AliasReordering(CollationData data, int[] codesAndRanges, int codesLength, byte[] table)
        {
            int[] codes;
            if (codesLength == codesAndRanges.Length)
            {
                codes = codesAndRanges;
            }
            else
            {
                // TODO: Java 6: Arrays.copyOf(codes, codesLength);
                codes = new int[codesLength];
                System.Array.Copy(codesAndRanges, 0, codes, 0, codesLength);
            }
            int rangesStart  = codesLength;
            int rangesLimit  = codesAndRanges.Length;
            int rangesLength = rangesLimit - rangesStart;

            if (table != null &&
                (rangesLength == 0 ?
                 !ReorderTableHasSplitBytes(table) :
                 rangesLength >= 2 &&
                 // The first offset must be 0. The last offset must not be 0.
                 (codesAndRanges[rangesStart] & 0xffff) == 0 &&
                 (codesAndRanges[rangesLimit - 1] & 0xffff) != 0))
            {
                reorderTable = table;
                reorderCodes = codes;
                // Drop ranges before the first split byte. They are reordered by the table.
                // This then speeds up reordering of the remaining ranges.
                int firstSplitByteRangeIndex = rangesStart;
                while (firstSplitByteRangeIndex < rangesLimit &&
                       (codesAndRanges[firstSplitByteRangeIndex] & 0xff0000) == 0)
                {
                    // The second byte of the primary limit is 0.
                    ++firstSplitByteRangeIndex;
                }
                if (firstSplitByteRangeIndex == rangesLimit)
                {
                    Debug.Assert(!ReorderTableHasSplitBytes(table));
                    minHighNoReorder = 0;
                    reorderRanges    = null;
                }
                else
                {
                    Debug.Assert(table[codesAndRanges[firstSplitByteRangeIndex].TripleShift(24)] == 0);
                    minHighNoReorder = codesAndRanges[rangesLimit - 1] & 0xffff0000L;
                    SetReorderRanges(codesAndRanges, firstSplitByteRangeIndex,
                                     rangesLimit - firstSplitByteRangeIndex);
                }
                return;
            }
            // Regenerate missing data.
            SetReordering(data, codes);
        }
Esempio n. 10
0
        public void ForCodePoint(CollationData d, int c)
        {
            int ce32 = d.GetCE32(c);

            if (ce32 == Collation.FALLBACK_CE32)
            {
                d    = d.Base;
                ce32 = d.GetCE32(c);
            }
            data = d;
            HandleCE32(c, c, ce32);
        }
Esempio n. 11
0
 private void AddPrefix(CollationData d, ICharSequence pfx, int c, int ce32)
 {
     SetPrefix(pfx);
     ce32 = d.GetFinalCE32(ce32);
     if (Collation.IsContractionCE32(ce32))
     {
         int idx = Collation.IndexFromCE32(ce32);
         AddContractions(c, d.contexts, idx + 2);
     }
     tailored.Add(unreversedPrefix.AppendCodePoint(c).ToString());
     ResetPrefix();
 }
        private void GetCEs(CollationData data)
        {
            int i = 0;

            for (char c = (char)0; ; ++i, ++c)
            {
                if (c == CollationFastLatin.LatinLimit)
                {
                    c = (char)CollationFastLatin.PUNCT_START;
                }
                else if (c == CollationFastLatin.PUNCT_LIMIT)
                {
                    break;
                }
                CollationData d;
                int           ce32 = data.GetCE32(c);
                if (ce32 == Collation.FALLBACK_CE32)
                {
                    d    = data.Base;
                    ce32 = d.GetCE32(c);
                }
                else
                {
                    d = data;
                }
                if (GetCEsFromCE32(d, c, ce32))
                {
                    charCEs[i][0] = ce0;
                    charCEs[i][1] = ce1;
                    AddUniqueCE(ce0);
                    AddUniqueCE(ce1);
                }
                else
                {
                    // bail out for c
                    charCEs[i][0] = ce0 = Collation.NoCE;
                    charCEs[i][1] = ce1 = 0;
                }
                if (c == 0 && !IsContractionCharCE(ce0))
                {
                    // Always map U+0000 to a contraction.
                    // Write a contraction list with only a default value if there is no real contraction.
                    Debug.Assert(contractionCEs.Count == 0);
                    AddContractionEntry(CollationFastLatin.CONTR_CHAR_MASK, ce0, ce1);
                    charCEs[0][0] = (Collation.NO_CE_PRIMARY << 32) | CONTRACTION_FLAG;
                    charCEs[0][1] = 0;
                }
            }
            // Terminate the last contraction list.
            contractionCEs.Add(CollationFastLatin.CONTR_CHAR_MASK);
        }
Esempio n. 13
0
 public void ForData(CollationData d)
 {
     data     = d;
     baseData = d.Base;
     Debug.Assert(baseData != null);
     // utrie2_enum(data->trie, NULL, enumTailoredRange, this);
     using (IEnumerator <Trie2.Range> trieIterator = data.trie.GetEnumerator())
     {
         Trie2.Range range;
         while (trieIterator.MoveNext() && !(range = trieIterator.Current).LeadSurrogate)
         {
             EnumTailoredRange(range.StartCodePoint, range.EndCodePoint, range.Value, this);
         }
     }
 }
        internal bool ForData(CollationData data)
        {
            if (result.Length != 0)
            {  // This builder is not reusable.
                throw new InvalidOperationException("attempt to reuse a CollationFastLatinBuilder");
            }
            if (!LoadGroups(data))
            {
                return(false);
            }

            // Fast handling of digits.
            firstShortPrimary = firstDigitPrimary;
            GetCEs(data);
            EncodeUniqueCEs();
            if (shortPrimaryOverflow)
            {
                // Give digits long mini primaries,
                // so that there are more short primaries for letters.
                firstShortPrimary = firstLatinPrimary;
                ResetCEs();
                GetCEs(data);
                EncodeUniqueCEs();
            }
            // Note: If we still have a short-primary overflow but not a long-primary overflow,
            // then we could calculate how many more long primaries would fit,
            // and set the firstShortPrimary to that many after the current firstShortPrimary,
            // and try again.
            // However, this might only benefit the en_US_POSIX tailoring,
            // and it is simpler to suppress building fast Latin data for it in genrb,
            // or by returning false here if shortPrimaryOverflow.

            bool ok = !shortPrimaryOverflow;

            if (ok)
            {
                EncodeCharCEs();
                EncodeContractions();
            }
            contractionCEs.Clear();  // might reduce heap memory usage
            uniqueCEs.Clear();
            return(ok);
        }
Esempio n. 15
0
 /// <summary>
 /// Partial constructor, see <see cref="CollationIterator.CollationIterator(CollationData)"/>
 /// </summary>
 public UTF16CollationIterator(CollationData d)
     : base(d)
 {
 }
Esempio n. 16
0
 public IterCollationIterator(CollationData d, bool numeric, UCharacterIterator ui)
     : base(d, numeric)
 {
     iter = ui;
 }
Esempio n. 17
0
        /// <summary>
        /// Computes the options value for the compare functions
        /// and writes the precomputed primary weights.
        /// Returns -1 if the Latin fastpath is not supported for the data and settings.
        /// The capacity must be <see cref="LatinLimit"/>.
        /// </summary>
        public static int GetOptions(CollationData data, CollationSettings settings,
                                     char[] primaries)
        {
            char[] header = data.fastLatinTableHeader;
            if (header == null)
            {
                return(-1);
            }
            Debug.Assert((header[0] >> 8) == Version);
            if (primaries.Length != LatinLimit)
            {
                Debug.Assert(false);
                return(-1);
            }

            int miniVarTop;

            if ((settings.Options & CollationSettings.AlternateMask) == 0)
            {
                // No mini primaries are variable, set a variableTop just below the
                // lowest long mini primary.
                miniVarTop = MIN_LONG - 1;
            }
            else
            {
                int headerLength = header[0] & 0xff;
                int i            = 1 + settings.MaxVariable;
                if (i >= headerLength)
                {
                    return(-1);  // variableTop >= digits, should not occur
                }
                miniVarTop = header[i];
            }

            bool digitsAreReordered = false;

            if (settings.HasReordering)
            {
                long prevStart        = 0;
                long beforeDigitStart = 0;
                long digitStart       = 0;
                long afterDigitStart  = 0;
                for (int group = ReorderCodes.First;
                     group < ReorderCodes.First + CollationData.MAX_NUM_SPECIAL_REORDER_CODES;
                     ++group)
                {
                    long start = data.GetFirstPrimaryForGroup(group);
                    start = settings.Reorder(start);
                    if (group == ReorderCodes.Digit)
                    {
                        beforeDigitStart = prevStart;
                        digitStart       = start;
                    }
                    else if (start != 0)
                    {
                        if (start < prevStart)
                        {
                            // The permutation affects the groups up to Latin.
                            return(-1);
                        }
                        // In the future, there might be a special group between digits & Latin.
                        if (digitStart != 0 && afterDigitStart == 0 && prevStart == beforeDigitStart)
                        {
                            afterDigitStart = start;
                        }
                        prevStart = start;
                    }
                }
                long latinStart = data.GetFirstPrimaryForGroup(UScript.Latin);
                latinStart = settings.Reorder(latinStart);
                if (latinStart < prevStart)
                {
                    return(-1);
                }
                if (afterDigitStart == 0)
                {
                    afterDigitStart = latinStart;
                }
                if (!(beforeDigitStart < digitStart && digitStart < afterDigitStart))
                {
                    digitsAreReordered = true;
                }
            }

            char[] table = data.FastLatinTable;  // skip the header
            for (int c = 0; c < LatinLimit; ++c)
            {
                int p = table[c];
                if (p >= MIN_SHORT)
                {
                    p &= SHORT_PRIMARY_MASK;
                }
                else if (p > miniVarTop)
                {
                    p &= LONG_PRIMARY_MASK;
                }
                else
                {
                    p = 0;
                }
                primaries[c] = (char)p;
            }
            if (digitsAreReordered || (settings.Options & CollationSettings.Numeric) != 0)
            {
                // Bail out for digits.
                for (int c = 0x30; c <= 0x39; ++c)
                {
                    primaries[c] = (char)0;
                }
            }

            // Shift the miniVarTop above other options.
            return((miniVarTop << 16) | settings.Options);
        }
        private bool GetCEsFromContractionCE32(CollationData data, int ce32)
        {
            int trieIndex = Collation.IndexFromCE32(ce32);

            ce32 = data.GetCE32FromContexts(trieIndex);  // Default if no suffix match.
                                                         // Since the original ce32 is not a prefix mapping,
                                                         // the default ce32 must not be another contraction.
            Debug.Assert(!Collation.IsContractionCE32(ce32));
            int contractionIndex = contractionCEs.Count;

            if (GetCEsFromCE32(data, Collation.SentinelCodePoint, ce32))
            {
                AddContractionEntry(CollationFastLatin.CONTR_CHAR_MASK, ce0, ce1);
            }
            else
            {
                // Bail out for c-without-contraction.
                AddContractionEntry(CollationFastLatin.CONTR_CHAR_MASK, Collation.NoCE, 0);
            }
            // Handle an encodable contraction unless the next contraction is too long
            // and starts with the same character.
            int  prevX          = -1;
            bool addContraction = false;

            using (CharsTrieEnumerator suffixes = CharsTrie.GetEnumerator(data.contexts, trieIndex + 2, 0))
            {
                while (suffixes.MoveNext())
                {
                    CharsTrieEntry entry  = suffixes.Current;
                    ICharSequence  suffix = entry.Chars;
                    int            x      = CollationFastLatin.GetCharIndex(suffix[0]);
                    if (x < 0)
                    {
                        continue;
                    }                         // ignore anything but fast Latin text
                    if (x == prevX)
                    {
                        if (addContraction)
                        {
                            // Bail out for all contractions starting with this character.
                            AddContractionEntry(x, Collation.NoCE, 0);
                            addContraction = false;
                        }
                        continue;
                    }
                    if (addContraction)
                    {
                        AddContractionEntry(prevX, ce0, ce1);
                    }
                    ce32 = entry.Value;
                    if (suffix.Length == 1 && GetCEsFromCE32(data, Collation.SentinelCodePoint, ce32))
                    {
                        addContraction = true;
                    }
                    else
                    {
                        AddContractionEntry(x, Collation.NoCE, 0);
                        addContraction = false;
                    }
                    prevX = x;
                }
            }
            if (addContraction)
            {
                AddContractionEntry(prevX, ce0, ce1);
            }
            // Note: There might not be any fast Latin contractions, but
            // we need to enter contraction handling anyway so that we can bail out
            // when there is a non-fast-Latin character following.
            // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the
            // following umlaut and bail out, rather than return the difference of Y vs. u.
            ce0 = (Collation.NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | (uint)contractionIndex;
            ce1 = 0;
            return(true);
        }
        private bool GetCEsFromCE32(CollationData data, int c, int ce32)
        {
            ce32 = data.GetFinalCE32(ce32);
            ce1  = 0;
            if (Collation.IsSimpleOrLongCE32(ce32))
            {
                ce0 = Collation.CeFromCE32(ce32);
            }
            else
            {
                switch (Collation.TagFromCE32(ce32))
                {
                case Collation.LATIN_EXPANSION_TAG:
                    ce0 = Collation.LatinCE0FromCE32(ce32);
                    ce1 = Collation.LatinCE1FromCE32(ce32);
                    break;

                case Collation.EXPANSION32_TAG:
                {
                    int index  = Collation.IndexFromCE32(ce32);
                    int length = Collation.LengthFromCE32(ce32);
                    if (length <= 2)
                    {
                        ce0 = Collation.CeFromCE32(data.ce32s[index]);
                        if (length == 2)
                        {
                            ce1 = Collation.CeFromCE32(data.ce32s[index + 1]);
                        }
                        break;
                    }
                    else
                    {
                        return(false);
                    }
                }

                case Collation.EXPANSION_TAG:
                {
                    int index  = Collation.IndexFromCE32(ce32);
                    int length = Collation.LengthFromCE32(ce32);
                    if (length <= 2)
                    {
                        ce0 = data.ces[index];
                        if (length == 2)
                        {
                            ce1 = data.ces[index + 1];
                        }
                        break;
                    }
                    else
                    {
                        return(false);
                    }
                }

                // Note: We could support PREFIX_TAG (assert c>=0)
                // by recursing on its default CE32 and checking that none of the prefixes starts
                // with a fast Latin character.
                // However, currently (2013) there are only the L-before-middle-dot
                // prefix mappings in the Latin range, and those would be rejected anyway.
                case Collation.CONTRACTION_TAG:
                    Debug.Assert(c >= 0);
                    return(GetCEsFromContractionCE32(data, ce32));

                case Collation.OFFSET_TAG:
                    Debug.Assert(c >= 0);
                    ce0 = data.GetCEFromOffsetCE32(c, ce32);
                    break;

                default:
                    return(false);
                }
            }
            // A mapping can be completely ignorable.
            if (ce0 == 0)
            {
                return(ce1 == 0);
            }
            // We do not support an ignorable ce0 unless it is completely ignorable.
            long p0 = ce0.TripleShift(32);

            if (p0 == 0)
            {
                return(false);
            }
            // We only support primaries up to the Latin script.
            if (p0 > lastLatinPrimary)
            {
                return(false);
            }
            // We support non-common secondary and case weights only together with short primaries.
            int lower32_0 = (int)ce0;

            if (p0 < firstShortPrimary)
            {
                int sc0 = lower32_0 & Collation.SECONDARY_AND_CASE_MASK;
                if (sc0 != Collation.COMMON_SECONDARY_CE)
                {
                    return(false);
                }
            }
            // No below-common tertiary weights.
            if ((lower32_0 & Collation.OnlyTertiaryMask) < Collation.CommonWeight16)
            {
                return(false);
            }
            if (ce1 != 0)
            {
                // Both primaries must be in the same group,
                // or both must get short mini primaries,
                // or a short-primary CE is followed by a secondary CE.
                // This is so that we can test the first primary and use the same mask for both,
                // and determine for both whether they are variable.
                long p1 = ce1.TripleShift(32);
                if (p1 == 0 ? p0 < firstShortPrimary : !InSameGroup(p0, p1))
                {
                    return(false);
                }
                int lower32_1 = (int)ce1;
                // No tertiary CEs.
                if ((lower32_1.TripleShift(16)) == 0)
                {
                    return(false);
                }
                // We support non-common secondary and case weights
                // only for secondary CEs or together with short primaries.
                if (p1 != 0 && p1 < firstShortPrimary)
                {
                    int sc1 = lower32_1 & Collation.SECONDARY_AND_CASE_MASK;
                    if (sc1 != Collation.COMMON_SECONDARY_CE)
                    {
                        return(false);
                    }
                }
                // No below-common tertiary weights.
                if ((lower32_0 & Collation.OnlyTertiaryMask) < Collation.CommonWeight16)
                {
                    return(false);
                }
            }
            // No quaternary weights.
            if (((ce0 | ce1) & Collation.QuaternaryMask) != 0)
            {
                return(false);
            }
            return(true);
        }
Esempio n. 20
0
        public void SetReordering(CollationData data, int[] codes)
        {
            if (codes.Length == 0 || (codes.Length == 1 && codes[0] == Text.ReorderCodes.None))
            {
                ResetReordering();
                return;
            }
            List <int> ranges = new List <int>();

            data.MakeReorderRanges(codes, ranges);
            int rangesLength = ranges.Count;

            if (rangesLength == 0)
            {
                ResetReordering();
                return;
            }
            // ranges[] contains at least two (limit, offset) pairs.
            // The first offset must be 0. The last offset must not be 0.
            // Separators (at the low end) and trailing weights (at the high end)
            // are never reordered.
            Debug.Assert(rangesLength >= 2);
            Debug.Assert((ranges[0] & 0xffff) == 0 && (ranges[rangesLength - 1] & 0xffff) != 0);
            minHighNoReorder = ranges[rangesLength - 1] & 0xffff0000L;

            // Write the lead byte permutation table.
            // Set a 0 for each lead byte that has a range boundary in the middle.
            byte[] table = new byte[256];
            int    b     = 0;
            int    firstSplitByteRangeIndex = -1;

            for (int i = 0; i < rangesLength; ++i)
            {
                int pair   = ranges[i];
                int limit1 = pair.TripleShift(24);
                while (b < limit1)
                {
                    table[b] = (byte)(b + pair);
                    ++b;
                }
                // Check the second byte of the limit.
                if ((pair & 0xff0000) != 0)
                {
                    table[limit1] = 0;
                    b             = limit1 + 1;
                    if (firstSplitByteRangeIndex < 0)
                    {
                        firstSplitByteRangeIndex = i;
                    }
                }
            }
            while (b <= 0xff)
            {
                table[b] = (byte)b;
                ++b;
            }
            int rangesStart;

            if (firstSplitByteRangeIndex < 0)
            {
                // The lead byte permutation table alone suffices for reordering.
                rangesStart = rangesLength = 0;
            }
            else
            {
                // Remove the ranges below the first split byte.
                rangesStart   = firstSplitByteRangeIndex;
                rangesLength -= firstSplitByteRangeIndex;
            }
            SetReorderArrays(codes, ranges, rangesStart, rangesLength, table);
        }
Esempio n. 21
0
 /// <summary>
 /// Partial constructor, see <see cref="CollationIterator.CollationIterator(CollationData)"/>
 /// </summary>
 public FCDUTF16CollationIterator(CollationData d)
     : base(d)
 {
     nfcImpl = d.NfcImpl;
 }
Esempio n. 22
0
        internal static void Read(CollationTailoring @base, ByteBuffer inBytes,
                                  CollationTailoring tailoring)
        {
            tailoring.Version = ICUBinary.ReadHeader(inBytes, DATA_FORMAT, IS_ACCEPTABLE);
            if (@base != null && @base.GetUCAVersion() != tailoring.GetUCAVersion())
            {
                throw new ICUException("Tailoring UCA version differs from base data UCA version");
            }

            int inLength = inBytes.Remaining;

            if (inLength < 8)
            {
                throw new ICUException("not enough bytes");
            }
            int indexesLength = inBytes.GetInt32();  // inIndexes[IX_INDEXES_LENGTH]

            if (indexesLength < 2 || inLength < indexesLength * 4)
            {
                throw new ICUException("not enough indexes");
            }
            int[] inIndexes = new int[IX_TOTAL_SIZE + 1];
            inIndexes[0] = indexesLength;
            for (int i = 1; i < indexesLength && i < inIndexes.Length; ++i)
            {
                inIndexes[i] = inBytes.GetInt32();
            }
            for (int i = indexesLength; i < inIndexes.Length; ++i)
            {
                inIndexes[i] = -1;
            }
            if (indexesLength > inIndexes.Length)
            {
                ICUBinary.SkipBytes(inBytes, (indexesLength - inIndexes.Length) * 4);
            }

            // Assume that the tailoring data is in initial state,
            // with null pointers and 0 lengths.

            // Set pointers to non-empty data parts.
            // Do this in order of their byte offsets. (Should help porting to Java.)

            int index;  // one of the indexes[] slots
            int offset; // byte offset for the index part
            int length; // number of bytes in the index part

            if (indexesLength > IX_TOTAL_SIZE)
            {
                length = inIndexes[IX_TOTAL_SIZE];
            }
            else if (indexesLength > IX_REORDER_CODES_OFFSET)
            {
                length = inIndexes[indexesLength - 1];
            }
            else
            {
                length = 0;  // only indexes, and inLength was already checked for them
            }
            if (inLength < length)
            {
                throw new ICUException("not enough bytes");
            }

            CollationData baseData = @base == null ? null : @base.Data;

            int[] reorderCodes;
            int   reorderCodesLength;

            index  = IX_REORDER_CODES_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 4)
            {
                if (baseData == null)
                {
                    // We assume for collation settings that
                    // the base data does not have a reordering.
                    throw new ICUException("Collation base data must not reorder scripts");
                }
                reorderCodesLength = length / 4;
                reorderCodes       = ICUBinary.GetInts(inBytes, reorderCodesLength, length & 3);

                // The reorderRanges (if any) are the trailing reorderCodes entries.
                // Split the array at the boundary.
                // Script or reorder codes do not exceed 16-bit values.
                // Range limits are stored in the upper 16 bits, and are never 0.
                int reorderRangesLength = 0;
                while (reorderRangesLength < reorderCodesLength &&
                       (reorderCodes[reorderCodesLength - reorderRangesLength - 1] & 0xffff0000) != 0)
                {
                    ++reorderRangesLength;
                }
                Debug.Assert(reorderRangesLength < reorderCodesLength);
                reorderCodesLength -= reorderRangesLength;
            }
            else
            {
                reorderCodes       = new int[0];
                reorderCodesLength = 0;
                ICUBinary.SkipBytes(inBytes, length);
            }

            // There should be a reorder table only if there are reorder codes.
            // However, when there are reorder codes the reorder table may be omitted to reduce
            // the data size.
            byte[] reorderTable = null;
            index  = IX_REORDER_TABLE_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 256)
            {
                if (reorderCodesLength == 0)
                {
                    throw new ICUException("Reordering table without reordering codes");
                }
                reorderTable = new byte[256];
                inBytes.Get(reorderTable);
                length -= 256;
            }
            else
            {
                // If we have reorder codes, then build the reorderTable at the end,
                // when the CollationData is otherwise complete.
            }
            ICUBinary.SkipBytes(inBytes, length);

            if (baseData != null && baseData.numericPrimary != (inIndexes[IX_OPTIONS] & 0xff000000L))
            {
                throw new ICUException("Tailoring numeric primary weight differs from base data");
            }
            CollationData data = null;  // Remains null if there are no mappings.

            index  = IX_TRIE_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 8)
            {
                tailoring.EnsureOwnedData();
                data                = tailoring.OwnedData;
                data.Base           = baseData;
                data.numericPrimary = inIndexes[IX_OPTIONS] & 0xff000000L;
                data.trie           = tailoring.Trie = Trie2_32.CreateFromSerialized(inBytes);
                int trieLength = data.trie.GetSerializedLength();
                if (trieLength > length)
                {
                    throw new ICUException("Not enough bytes for the mappings trie");  // No mappings.
                }
                length -= trieLength;
            }
            else if (baseData != null)
            {
                // Use the base data. Only the settings are tailored.
                tailoring.Data = baseData;
            }
            else
            {
                throw new ICUException("Missing collation data mappings");  // No mappings.
            }
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_RESERVED8_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_CES_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 8)
            {
                if (data == null)
                {
                    throw new ICUException("Tailored ces without tailored trie");
                }
                data.ces = ICUBinary.GetLongs(inBytes, length / 8, length & 7);
            }
            else
            {
                ICUBinary.SkipBytes(inBytes, length);
            }

            index  = IX_RESERVED10_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_CE32S_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 4)
            {
                if (data == null)
                {
                    throw new ICUException("Tailored ce32s without tailored trie");
                }
                data.ce32s = ICUBinary.GetInts(inBytes, length / 4, length & 3);
            }
            else
            {
                ICUBinary.SkipBytes(inBytes, length);
            }

            int jamoCE32sStart = inIndexes[IX_JAMO_CE32S_START];

            if (jamoCE32sStart >= 0)
            {
                if (data == null || data.ce32s == null)
                {
                    throw new ICUException("JamoCE32sStart index into non-existent ce32s[]");
                }
                data.jamoCE32s = new int[CollationData.JAMO_CE32S_LENGTH];
                // ICU4N specific - added extension method to IList<T> to handle "copy to"
                data.ce32s.CopyTo(jamoCE32sStart, data.jamoCE32s, 0, CollationData.JAMO_CE32S_LENGTH);
            }
            else if (data == null)
            {
                // Nothing to do.
            }
            else if (baseData != null)
            {
                data.jamoCE32s = baseData.jamoCE32s;
            }
            else
            {
                throw new ICUException("Missing Jamo CE32s for Hangul processing");
            }

            index  = IX_ROOT_ELEMENTS_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 4)
            {
                int rootElementsLength = length / 4;
                if (data == null)
                {
                    throw new ICUException("Root elements but no mappings");
                }
                if (rootElementsLength <= CollationRootElements.IX_SEC_TER_BOUNDARIES)
                {
                    throw new ICUException("Root elements array too short");
                }
                data.rootElements = new long[rootElementsLength];
                for (int i = 0; i < rootElementsLength; ++i)
                {
                    data.rootElements[i] = inBytes.GetInt32() & 0xffffffffL;  // unsigned int -> long
                }
                long commonSecTer = data.rootElements[CollationRootElements.IX_COMMON_SEC_AND_TER_CE];
                if (commonSecTer != Collation.COMMON_SEC_AND_TER_CE)
                {
                    throw new ICUException("Common sec/ter weights in base data differ from the hardcoded value");
                }
                long secTerBoundaries = data.rootElements[CollationRootElements.IX_SEC_TER_BOUNDARIES];
                if ((secTerBoundaries.TripleShift(24)) < CollationKeys.SEC_COMMON_HIGH)
                {
                    // [fixed last secondary common byte] is too low,
                    // and secondary weights would collide with compressed common secondaries.
                    throw new ICUException("[fixed last secondary common byte] is too low");
                }
                length &= 3;
            }
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_CONTEXTS_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 2)
            {
                if (data == null)
                {
                    throw new ICUException("Tailored contexts without tailored trie");
                }
                data.contexts = ICUBinary.GetString(inBytes, length / 2, length & 1);
            }
            else
            {
                ICUBinary.SkipBytes(inBytes, length);
            }

            index  = IX_UNSAFE_BWD_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 2)
            {
                if (data == null)
                {
                    throw new ICUException("Unsafe-backward-set but no mappings");
                }
                if (baseData == null)
                {
                    // Create the unsafe-backward set for the root collator.
                    // Include all non-zero combining marks and trail surrogates.
                    // We do this at load time, rather than at build time,
                    // to simplify Unicode version bootstrapping:
                    // The root data builder only needs the new FractionalUCA.txt data,
                    // but it need not be built with a version of ICU already updated to
                    // the corresponding new Unicode Character Database.
                    //
                    // The following is an optimized version of
                    // new UnicodeSet("[[:^lccc=0:][\\udc00-\\udfff]]").
                    // It is faster and requires fewer code dependencies.
                    tailoring.UnsafeBackwardSet = new UnicodeSet(0xdc00, 0xdfff);  // trail surrogates
                    data.nfcImpl.AddLcccChars(tailoring.UnsafeBackwardSet);
                }
                else
                {
                    // Clone the root collator's set contents.
                    tailoring.UnsafeBackwardSet = baseData.unsafeBackwardSet.CloneAsThawed();
                }
                // Add the ranges from the data file to the unsafe-backward set.
                USerializedSet sset       = new USerializedSet();
                char[]         unsafeData = ICUBinary.GetChars(inBytes, length / 2, length & 1);
                length = 0;
                sset.GetSet(unsafeData, 0);
                int   count = sset.CountRanges();
                int[] range = new int[2];
                for (int i = 0; i < count; ++i)
                {
                    sset.GetRange(i, range);
                    tailoring.UnsafeBackwardSet.Add(range[0], range[1]);
                }
                // Mark each lead surrogate as "unsafe"
                // if any of its 1024 associated supplementary code points is "unsafe".
                int c = 0x10000;
                for (int lead = 0xd800; lead < 0xdc00; ++lead, c += 0x400)
                {
                    if (!tailoring.UnsafeBackwardSet.ContainsNone(c, c + 0x3ff))
                    {
                        tailoring.UnsafeBackwardSet.Add(lead);
                    }
                }
                tailoring.UnsafeBackwardSet.Freeze();
                data.unsafeBackwardSet = tailoring.UnsafeBackwardSet;
            }
            else if (data == null)
            {
                // Nothing to do.
            }
            else if (baseData != null)
            {
                // No tailoring-specific data: Alias the root collator's set.
                data.unsafeBackwardSet = baseData.unsafeBackwardSet;
            }
            else
            {
                throw new ICUException("Missing unsafe-backward-set");
            }
            ICUBinary.SkipBytes(inBytes, length);

            // If the fast Latin format version is different,
            // or the version is set to 0 for "no fast Latin table",
            // then just always use the normal string comparison path.
            index  = IX_FAST_LATIN_TABLE_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (data != null)
            {
                data.fastLatinTable       = null;
                data.fastLatinTableHeader = null;
                if (((inIndexes[IX_OPTIONS] >> 16) & 0xff) == CollationFastLatin.VERSION)
                {
                    if (length >= 2)
                    {
                        char header0      = inBytes.GetChar();
                        int  headerLength = header0 & 0xff;
                        data.fastLatinTableHeader    = new char[headerLength];
                        data.fastLatinTableHeader[0] = header0;
                        for (int i = 1; i < headerLength; ++i)
                        {
                            data.fastLatinTableHeader[i] = inBytes.GetChar();
                        }
                        int tableLength = length / 2 - headerLength;
                        data.fastLatinTable = ICUBinary.GetChars(inBytes, tableLength, length & 1);
                        length = 0;
                        if ((header0 >> 8) != CollationFastLatin.VERSION)
                        {
                            throw new ICUException("Fast-Latin table version differs from version in data header");
                        }
                    }
                    else if (baseData != null)
                    {
                        data.fastLatinTable       = baseData.fastLatinTable;
                        data.fastLatinTableHeader = baseData.fastLatinTableHeader;
                    }
                }
            }
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_SCRIPTS_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 2)
            {
                if (data == null)
                {
                    throw new ICUException("Script order data but no mappings");
                }
                int        scriptsLength = length / 2;
                CharBuffer inChars       = inBytes.AsCharBuffer();
                data.numScripts = inChars.Get();
                // There must be enough entries for both arrays, including more than two range starts.
                int scriptStartsLength = scriptsLength - (1 + data.numScripts + 16);
                if (scriptStartsLength <= 2)
                {
                    throw new ICUException("Script order data too short");
                }
                inChars.Get(data.scriptsIndex = new char[data.numScripts + 16]);
                inChars.Get(data.scriptStarts = new char[scriptStartsLength]);
                if (!(data.scriptStarts[0] == 0 &&
                      data.scriptStarts[1] == ((Collation.MERGE_SEPARATOR_BYTE + 1) << 8) &&
                      data.scriptStarts[scriptStartsLength - 1] ==
                      (Collation.TRAIL_WEIGHT_BYTE << 8)))
                {
                    throw new ICUException("Script order data not valid");
                }
            }
            else if (data == null)
            {
                // Nothing to do.
            }
            else if (baseData != null)
            {
                data.numScripts   = baseData.numScripts;
                data.scriptsIndex = baseData.scriptsIndex;
                data.scriptStarts = baseData.scriptStarts;
            }
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_COMPRESSIBLE_BYTES_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            if (length >= 256)
            {
                if (data == null)
                {
                    throw new ICUException("Data for compressible primary lead bytes but no mappings");
                }
                data.compressibleBytes = new bool[256];
                for (int i = 0; i < 256; ++i)
                {
                    data.compressibleBytes[i] = inBytes.Get() != 0;
                }
                length -= 256;
            }
            else if (data == null)
            {
                // Nothing to do.
            }
            else if (baseData != null)
            {
                data.compressibleBytes = baseData.compressibleBytes;
            }
            else
            {
                throw new ICUException("Missing data for compressible primary lead bytes");
            }
            ICUBinary.SkipBytes(inBytes, length);

            index  = IX_RESERVED18_OFFSET;
            offset = inIndexes[index];
            length = inIndexes[index + 1] - offset;
            ICUBinary.SkipBytes(inBytes, length);

            CollationSettings ts = tailoring.Settings.ReadOnly;
            int options          = inIndexes[IX_OPTIONS] & 0xffff;

            char[] fastLatinPrimaries = new char[CollationFastLatin.LATIN_LIMIT];
            int    fastLatinOptions   = CollationFastLatin.GetOptions(
                tailoring.Data, ts, fastLatinPrimaries);

            if (options == ts.Options && ts.VariableTop != 0 &&
                Arrays.Equals(reorderCodes, ts.ReorderCodes) &&
                fastLatinOptions == ts.FastLatinOptions &&
                (fastLatinOptions < 0 ||
                 Arrays.Equals(fastLatinPrimaries, ts.FastLatinPrimaries)))
            {
                return;
            }

            CollationSettings settings = tailoring.Settings.CopyOnWrite();

            settings.Options = options;
            // Set variableTop from options and scripts data.
            settings.VariableTop = tailoring.Data.GetLastPrimaryForGroup(
                ReorderCodes.First + settings.MaxVariable);
            if (settings.VariableTop == 0)
            {
                throw new ICUException("The maxVariable could not be mapped to a variableTop");
            }

            if (reorderCodesLength != 0)
            {
                settings.AliasReordering(baseData, reorderCodes, reorderCodesLength, reorderTable);
            }

            settings.FastLatinOptions = CollationFastLatin.GetOptions(
                tailoring.Data, settings,
                settings.FastLatinPrimaries);
        }
Esempio n. 23
0
 /// <summary>
 /// Constructor.
 /// The <see cref="ISink"/> must be set before parsing.
 /// The <see cref="IImporter"/> can be set, otherwise [import locale] syntax is not supported.
 /// </summary>
 /// <param name="baseData"></param>
 internal CollationRuleParser(CollationData baseData)
 {
     this.baseData = baseData;
 }