Esempio n. 1
0
		public static void Run(DecompilerContext context, ILBlock method)
		{
			if (!context.Settings.YieldReturn)
				return; // abort if enumerator decompilation is disabled
			var yrd = new YieldReturnDecompiler();
			yrd.context = context;
			if (!yrd.MatchEnumeratorCreationPattern(method))
				return;
			yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType;
			#if DEBUG
			if (Debugger.IsAttached) {
				yrd.Run();
			} else {
				#endif
				try {
					yrd.Run();
				} catch (SymbolicAnalysisFailedException) {
					return;
				}
				#if DEBUG
			}
			#endif
			method.Body.Clear();
			method.EntryGoto = null;
			method.Body.AddRange(yrd.newBody);
			
			// Repeat the inlining/copy propagation optimization because the conversion of field access
			// to local variables can open up additional inlining possibilities.
			ILInlining inlining = new ILInlining(method);
			inlining.InlineAllVariables();
			inlining.CopyPropagation();
		}
Esempio n. 2
0
		public static void Run(DecompilerContext context, ILBlock method)
		{
			if (!context.Settings.YieldReturn)
				return; // abort if enumerator decompilation is disabled
			var yrd = new YieldReturnDecompiler();
			yrd.context = context;
			if (!yrd.MatchEnumeratorCreationPattern(method))
				return;
			yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType;
			#if DEBUG
			if (Debugger.IsAttached) {
				yrd.Run();
			} else {
				#endif
				try {
					yrd.Run();
				} catch (YieldAnalysisFailedException) {
					return;
				}
				#if DEBUG
			}
			#endif
			method.Body.Clear();
			method.EntryGoto = null;
			method.Body.AddRange(yrd.newBody);
		}
Esempio n. 3
0
		public static void Run(DecompilerContext context, ILBlock method, List<ILNode> list_ILNode, Func<ILBlock, ILInlining> getILInlining)
		{
			if (!context.Settings.YieldReturn)
				return; // abort if enumerator decompilation is disabled
			var yrd = new YieldReturnDecompiler();
			yrd.context = context;
			if (!yrd.MatchEnumeratorCreationPattern(method))
				return;
			yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType;
			#if DEBUG && CRASH_IN_DEBUG_MODE
			if (Debugger.IsAttached) {
				yrd.Run();
			} else {
				#endif
				try {
					yrd.Run();
				} catch (SymbolicAnalysisFailedException) {
					return;
				}
				#if DEBUG && CRASH_IN_DEBUG_MODE
			}
			#endif
			method.Body.Clear();
			method.EntryGoto = null;
			method.Body.AddRange(yrd.newBody);//TODO: Make sure that the removed ILRanges from Clear() above is saved in the new body
			
			// Repeat the inlining/copy propagation optimization because the conversion of field access
			// to local variables can open up additional inlining possibilities.
			var inlining = getILInlining(method);
			inlining.InlineAllVariables();
			inlining.CopyPropagation(list_ILNode);
		}
 void Run()
 {
     AnalyzeMoveNext();
     ValidateCatchBlock(mainTryCatch.CatchBlocks[0]);
     AnalyzeStateMachine(mainTryCatch.TryBlock);
     // AnalyzeStateMachine invokes ConvertBody
     MarkGeneratedVariables();
     YieldReturnDecompiler.TranslateFieldsToLocalAccess(newTopLevelBody, fieldToParameterMap);
 }
        public static void Run(DecompilerContext context, ILBlock method)
        {
            if (!context.Settings.YieldReturn)
            {
                return; // abort if enumerator decompilation is disabled
            }
            var yrd = new YieldReturnDecompiler();

            yrd.context = context;
            if (!yrd.MatchEnumeratorCreationPattern(method))
            {
                return;
            }
            yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType;
#if DEBUG
            if (Debugger.IsAttached)
            {
                yrd.Run();
            }
            else
            {
#endif
            try
            {
                yrd.Run();
            }
            catch (SymbolicAnalysisFailedException)
            {
                return;
            }
#if DEBUG
        }
#endif
            method.Body.Clear();
            method.EntryGoto = null;
            method.Body.AddRange(yrd.newBody);

            // Repeat the inlining/copy propagation optimization because the conversion of field access
            // to local variables can open up additional inlining possibilities.
            ILInlining inlining = new ILInlining(method);
            inlining.InlineAllVariables();
            inlining.CopyPropagation();
        }
Esempio n. 6
0
        public static void Run(DecompilerContext context, ILBlock method, List <ILNode> list_ILNode, Func <ILBlock, ILInlining> getILInlining)
        {
            if (!context.Settings.YieldReturn)
            {
                return;                 // abort if enumerator decompilation is disabled
            }
            var yrd = new YieldReturnDecompiler();

            yrd.context = context;
            if (!yrd.MatchEnumeratorCreationPattern(method))
            {
                return;
            }
            yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType;
                        #if DEBUG && CRASH_IN_DEBUG_MODE
            if (Debugger.IsAttached)
            {
                yrd.Run();
            }
            else
            {
                                #endif
            try {
                yrd.Run();
            } catch (SymbolicAnalysisFailedException) {
                return;
            }
                                #if DEBUG && CRASH_IN_DEBUG_MODE
        }
                        #endif
            method.Body.Clear();
            method.EntryGoto = null;
            method.Body.AddRange(yrd.newBody);            //TODO: Make sure that the removed ILRanges from Clear() above is saved in the new body

            // Repeat the inlining/copy propagation optimization because the conversion of field access
            // to local variables can open up additional inlining possibilities.
            var inlining = getILInlining(method);
            inlining.InlineAllVariables();
            inlining.CopyPropagation(list_ILNode);
        }
Esempio n. 7
0
        public void Optimize(DecompilerContext context, ILBlock method, ILAstOptimizationStep abortBeforeStep = ILAstOptimizationStep.None)
        {
            this.context    = context;
            this.typeSystem = context.CurrentMethod.Module.TypeSystem;
            this.method     = method;

            if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode)
            {
                return;
            }
            RemoveRedundantCode(method);

            if (abortBeforeStep == ILAstOptimizationStep.ReduceBranchInstructionSet)
            {
                return;
            }
            foreach (ILBlock block in method.GetSelfAndChildrenRecursive <ILBlock>())
            {
                ReduceBranchInstructionSet(block);
            }
            // ReduceBranchInstructionSet runs before inlining because the non-aggressive inlining heuristic
            // looks at which type of instruction consumes the inlined variable.

            if (abortBeforeStep == ILAstOptimizationStep.InlineVariables)
            {
                return;
            }
            // Works better after simple goto removal because of the following debug pattern: stloc X; br Next; Next:; ldloc X
            ILInlining inlining1 = new ILInlining(method);

            inlining1.InlineAllVariables();

            if (abortBeforeStep == ILAstOptimizationStep.CopyPropagation)
            {
                return;
            }
            inlining1.CopyPropagation();

            if (abortBeforeStep == ILAstOptimizationStep.YieldReturn)
            {
                return;
            }
            YieldReturnDecompiler.Run(context, method);

            if (abortBeforeStep == ILAstOptimizationStep.PropertyAccessInstructions)
            {
                return;
            }
            IntroducePropertyAccessInstructions(method);

            if (abortBeforeStep == ILAstOptimizationStep.SplitToMovableBlocks)
            {
                return;
            }
            foreach (ILBlock block in method.GetSelfAndChildrenRecursive <ILBlock>())
            {
                SplitToBasicBlocks(block);
            }

            if (abortBeforeStep == ILAstOptimizationStep.TypeInference)
            {
                return;
            }
            // Types are needed for the ternary operator optimization
            TypeAnalysis.Run(context, method);

            foreach (ILBlock block in method.GetSelfAndChildrenRecursive <ILBlock>())
            {
                bool modified;
                do
                {
                    modified = false;

                    if (abortBeforeStep == ILAstOptimizationStep.SimplifyShortCircuit)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyShortCircuit);

                    if (abortBeforeStep == ILAstOptimizationStep.SimplifyTernaryOperator)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyTernaryOperator);

                    if (abortBeforeStep == ILAstOptimizationStep.SimplifyNullCoalescing)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyNullCoalescing);

                    if (abortBeforeStep == ILAstOptimizationStep.JoinBasicBlocks)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(new SimpleControlFlow(context, method).JoinBasicBlocks);

                    if (abortBeforeStep == ILAstOptimizationStep.TransformDecimalCtorToConstant)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(TransformDecimalCtorToConstant);
                    modified |= block.RunOptimization(SimplifyLdcI4ConvI8);

                    if (abortBeforeStep == ILAstOptimizationStep.SimplifyLdObjAndStObj)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(SimplifyLdObjAndStObj);

                    if (abortBeforeStep == ILAstOptimizationStep.TransformArrayInitializers)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(TransformArrayInitializers);

                    if (abortBeforeStep == ILAstOptimizationStep.TransformObjectInitializers)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(TransformObjectInitializers);

                    if (abortBeforeStep == ILAstOptimizationStep.MakeAssignmentExpression)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(MakeAssignmentExpression);
                    modified |= block.RunOptimization(MakeCompoundAssignments);

                    if (abortBeforeStep == ILAstOptimizationStep.IntroducePostIncrement)
                    {
                        return;
                    }
                    modified |= block.RunOptimization(IntroducePostIncrement);

                    if (abortBeforeStep == ILAstOptimizationStep.InlineVariables2)
                    {
                        return;
                    }
                    modified |= new ILInlining(method).InlineAllInBlock(block);
                    new ILInlining(method).CopyPropagation();
                } while(modified);
            }

            if (abortBeforeStep == ILAstOptimizationStep.FindLoops)
            {
                return;
            }
            foreach (ILBlock block in method.GetSelfAndChildrenRecursive <ILBlock>())
            {
                new LoopsAndConditions(context).FindLoops(block);
            }

            if (abortBeforeStep == ILAstOptimizationStep.FindConditions)
            {
                return;
            }
            foreach (ILBlock block in method.GetSelfAndChildrenRecursive <ILBlock>())
            {
                new LoopsAndConditions(context).FindConditions(block);
            }

            if (abortBeforeStep == ILAstOptimizationStep.FlattenNestedMovableBlocks)
            {
                return;
            }
            FlattenBasicBlocks(method);

            if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode2)
            {
                return;
            }
            RemoveRedundantCode(method);

            if (abortBeforeStep == ILAstOptimizationStep.GotoRemoval)
            {
                return;
            }
            new GotoRemoval().RemoveGotos(method);

            if (abortBeforeStep == ILAstOptimizationStep.DuplicateReturns)
            {
                return;
            }
            DuplicateReturnStatements(method);

            if (abortBeforeStep == ILAstOptimizationStep.ReduceIfNesting)
            {
                return;
            }
            ReduceIfNesting(method);

            if (abortBeforeStep == ILAstOptimizationStep.InlineVariables3)
            {
                return;
            }
            // The 2nd inlining pass is necessary because DuplicateReturns and the introduction of ternary operators
            // open up additional inlining possibilities.
            new ILInlining(method).InlineAllVariables();

            if (abortBeforeStep == ILAstOptimizationStep.CachedDelegateInitialization)
            {
                return;
            }
            foreach (ILBlock block in method.GetSelfAndChildrenRecursive <ILBlock>())
            {
                for (int i = 0; i < block.Body.Count; i++)
                {
                    // TODO: Move before loops
                    CachedDelegateInitializationWithField(block, ref i);
                    CachedDelegateInitializationWithLocal(block, ref i);
                }
            }

            if (abortBeforeStep == ILAstOptimizationStep.IntroduceFixedStatements)
            {
                return;
            }
            // we need post-order traversal, not pre-order, for "fixed" to work correctly
            foreach (ILBlock block in TreeTraversal.PostOrder <ILNode>(method, n => n.GetChildren()).OfType <ILBlock>())
            {
                for (int i = block.Body.Count - 1; i >= 0; i--)
                {
                    // TODO: Move before loops
                    if (i < block.Body.Count)
                    {
                        IntroduceFixedStatements(block.Body, i);
                    }
                }
            }

            if (abortBeforeStep == ILAstOptimizationStep.RecombineVariables)
            {
                return;
            }
            RecombineVariables(method);

            if (abortBeforeStep == ILAstOptimizationStep.TypeInference2)
            {
                return;
            }
            TypeAnalysis.Reset(method);
            TypeAnalysis.Run(context, method);

            if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode3)
            {
                return;
            }
            GotoRemoval.RemoveRedundantCode(method);

            // ReportUnassignedILRanges(method);
        }