Implementation of HW1 Calibration Problem (Caps matrix based).
Inheritance: IOptimizationProblem
        /// <summary>
        /// Attempts a calibration through <see cref="CapsHW1OptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            PFunction zr = new PFunction(null);
            zr.VarName = "zr";

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Loads ZR
            double[,] zrvalue = (double[,])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr = zrvalue;

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            if (dataset.CapVolatility == null)
                return new EstimationResult("Cap not available at requested date");

            Matrix capVolatility = dataset.CapVolatility;
            Vector capMaturity = dataset.CapMaturity;
            Vector capRate = dataset.CapRate;
            double a = 0.1;
            double sigma = 0.1;

            // Matrix calculated with Black.
            Matrix blackCaps = new Matrix(capMaturity.Length, capRate.Length);
            Matrix logic = new Matrix(capMaturity.Length, capRate.Length);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    blackCaps[m, s] = bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                    if (double.IsNaN(blackCaps[m, s]))
                    {
                        bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                        throw new Exception("Malformed black caps");
                    }

                    if (blackCaps[m, s] == 0.0)
                    {
                        logic[m, s] = 0.0;
                    }
                    else
                    {
                        logic[m, s] = 1.0;
                    }

                    //filter
                    if (preferences != null)
                    {
                        if (capRate[s] < preferences.MinCapRate || capRate[s] > preferences.MaxCapRate ||
                            capMaturity[m]<preferences.MinCapMaturity|| capMaturity[m]>preferences.MaxCapMaturity)
                                {logic[m, s] = 0; blackCaps[m, s] = 0;}
                    }

                }
            }

            DateTime t0 = DateTime.Now;
            CapHW1 hw1Caps = new CapHW1(zr);
            Matrix caps = hw1Caps.HWMatrixCaps(capMaturity, capRate, a, sigma, deltak);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    caps[m, s] = logic[m, s] * caps[m, s];
                }
            }

            CapsHW1OptimizationProblem problem = new CapsHW1OptimizationProblem(hw1Caps, blackCaps, capMaturity, capRate, deltak);
            Vector provaparam = new Vector(2);

            var solver = new QADE();

            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.NP = 20;
            o.MaxIter = 10;
            o.Verbosity = 1;
            o.Parallel = false;
            SolutionInfo solution = null;
            Vector x0 = new Vector(new double[] { 0.05, 0.01 });
            o.controller = controller;
            solution = solver.Minimize(problem, o, x0);

            o.epsilon = 10e-8;
            o.h = 10e-8;

            o.MaxIter = 100;
            solution = solver2.Minimize(problem, o, solution.x);
            if (solution.errors)
                return new EstimationResult(solution.message);
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };

            //solution.x[0] *= 3;

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            return result;
        }
Esempio n. 2
0
        /// <summary>
        /// Attempts a calibration through <see cref="CapsHW1OptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            PFunction zr = new PFunction(null);

            zr.VarName = "zr";

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Loads ZR
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            if (dataset.CapVolatility == null)
            {
                return(new EstimationResult("Cap not available at requested date"));
            }


            Matrix capVolatility = dataset.CapVolatility;
            Vector capMaturity   = dataset.CapMaturity;
            Vector capRate       = dataset.CapRate;
            double a             = 0.1;
            double sigma         = 0.1;

            // Matrix calculated with Black.
            Matrix blackCaps = new Matrix(capMaturity.Length, capRate.Length);
            Matrix logic     = new Matrix(capMaturity.Length, capRate.Length);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    blackCaps[m, s] = bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                    if (double.IsNaN(blackCaps[m, s]))
                    {
                        bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                        throw new Exception("Malformed black caps");
                    }

                    if (blackCaps[m, s] == 0.0)
                    {
                        logic[m, s] = 0.0;
                    }
                    else
                    {
                        logic[m, s] = 1.0;
                    }

                    //filter
                    if (preferences != null)
                    {
                        if (capRate[s] < preferences.MinCapRate || capRate[s] > preferences.MaxCapRate ||
                            capMaturity[m] < preferences.MinCapMaturity || capMaturity[m] > preferences.MaxCapMaturity)
                        {
                            logic[m, s] = 0; blackCaps[m, s] = 0;
                        }
                    }
                }
            }

            DateTime t0      = DateTime.Now;
            CapHW1   hw1Caps = new CapHW1(zr);
            Matrix   caps    = hw1Caps.HWMatrixCaps(capMaturity, capRate, a, sigma, deltak);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    caps[m, s] = logic[m, s] * caps[m, s];
                }
            }

            CapsHW1OptimizationProblem problem = new CapsHW1OptimizationProblem(hw1Caps, blackCaps, capMaturity, capRate, deltak);
            Vector provaparam = new Vector(2);

            var solver = new QADE();

            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP        = 20;
            o.MaxIter   = 10;
            o.Verbosity = 1;
            o.Parallel  = false;
            SolutionInfo solution = null;
            Vector       x0       = new Vector(new double[] { 0.05, 0.01 });

            o.controller = controller;
            solution     = solver.Minimize(problem, o, x0);

            o.epsilon = 10e-8;
            o.h       = 10e-8;


            o.MaxIter = 100;
            solution  = solver2.Minimize(problem, o, solution.x);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };


            //solution.x[0] *= 3;

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            return(result);
        }