/// <summary> /// Make a prediction using the standard interface /// </summary> /// <param name="input">an instance of RamenInput to predict from</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public RamenOutput GetPrediction(RamenInput input, out NSError error) { if (input == null) { throw new ArgumentNullException(nameof(input)); } var prediction = model.GetPrediction(input, out error); if (prediction == null) { return(null); } var lossValue = prediction.GetFeatureValue("loss").DictionaryValue; var classLabelValue = prediction.GetFeatureValue("classLabel").StringValue; return(new RamenOutput(lossValue, classLabelValue)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="data"> as color (kCVPixelFormatType_32BGRA) image buffer, 224 pizels wide by 224 pixels high</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public RamenOutput GetPrediction(CVPixelBuffer data, MLPredictionOptions options, out NSError error) { var input = new RamenInput(data); return(GetPrediction(input, options, out error)); }