Esempio n. 1
0
        public static double[] ToArray(MatrixNumeric mLeft)
        {
            Debug.Assert((mLeft.NumColumns == 1 && mLeft.NumRows >= 1) || (mLeft.NumRows == 1 && mLeft.NumColumns >= 1));



            double[] dRet = null;

            if (mLeft.NumColumns > 1)
            {
                int nNumElements = mLeft.NumColumns;

                dRet = new double[nNumElements];

                for (int i = 0; i < nNumElements; i++)
                {
                    dRet[i] = mLeft[0, i];
                }
            }
            else
            {
                int nNumElements = mLeft.NumRows;

                dRet = new double[nNumElements];

                for (int i = 0; i < nNumElements; i++)
                {
                    dRet[i] = mLeft[i, 0];
                }
            }

            return(dRet);
        }
Esempio n. 2
0
        public static double[] Regress(double[,] dZ, double[] dY)
        {
            //y=a0 z1 + a1 z1 +a2 z2 + a3 z3 +...

            //Z is the functional values.

            //Z index 0 is a row, the variables go across index 1.

            //Y is the summed value.

            //returns the coefficients.

            System.Diagnostics.Debug.Assert(dZ != null && dY != null);

            System.Diagnostics.Debug.Assert(dZ.GetLength(0) == dY.GetLength(0));



            MatrixNumeric mZ = dZ;

            MatrixNumeric mZTran = mZ.Transpose();

            MatrixNumeric mLHS = mZTran * mZ;

            MatrixNumeric mRHS = mZTran * dY;

            MatrixNumeric mCoefs = mLHS.SolveFor(mRHS);



            return(mCoefs);
        }
Esempio n. 3
0
        public static double[] Regress(this double[] dX, double[] dY, int polyOrder)
        {
            if (polyOrder == 1)
            {
                throw new InvalidCastException(new { polyOrder, error = "Use Linear instead" } +"");
            }
            if (dY.Length == 0)
            {
                return new[] { double.NaN, double.NaN }
            }
            ;
            if (dY.Length == 1)
            {
                return new[] { dY[1], 0 }
            }
            ;
            int nPolyOrder = polyOrder;

            double[,] dZ = new double[dY.Length, nPolyOrder + 1];

            var l = dY.Length;

            for (int i = 0; i < l; i++)
            {
                for (int j = 0; j < nPolyOrder + 1; j++)
                {
                    dZ[i, j] = j == 1 ? dX[i] : j == 2 ? dX[i] * dX[i] : Math.Pow(dX[i], (double)j);
                }
            }
            return(MatrixNumeric.Regress(dZ, dY));
        }
Esempio n. 4
0
        public LUDecompositionResults(MatrixNumeric matL, MatrixNumeric matU, int[] nPivotArray, LUDecompositionResultStatus enuStatus)
        {
            m_matL = matL;

            m_matU = matU;

            m_nPivotArray = nPivotArray;

            m_enuStatus = enuStatus;
        }
Esempio n. 5
0
        public static MatrixNumeric FromArray(double[] dLeft)
        {
            int nLength = dLeft.Length;

            MatrixNumeric mRet = new MatrixNumeric(nLength, 1);

            for (int i = 0; i < nLength; i++)
            {
                mRet[i, 0] = dLeft[i];
            }

            return(mRet);
        }
Esempio n. 6
0
        public static MatrixNumeric Multiply(double dLeft, MatrixNumeric mRight)
        {
            MatrixNumeric mRet = new MatrixNumeric(mRight.NumRows, mRight.NumColumns);

            for (int i = 0; i < mRight.NumRows; i++)
            {
                for (int j = 0; j < mRight.NumColumns; j++)
                {
                    mRet[i, j] = dLeft * mRight[i, j];
                }
            }

            return(mRet);
        }
Esempio n. 7
0
        public static MatrixNumeric Divide(MatrixNumeric mLeft, double dRight)
        {
            MatrixNumeric mRet = new MatrixNumeric(mLeft.NumRows, mLeft.NumColumns);

            for (int i = 0; i < mLeft.NumRows; i++)
            {
                for (int j = 0; j < mLeft.NumColumns; j++)
                {
                    mRet[i, j] = mLeft[i, j] / dRight;
                }
            }

            return(mRet);
        }
Esempio n. 8
0
        public static MatrixNumeric Identity(int nSize)
        {
            MatrixNumeric mRet = new MatrixNumeric(nSize, nSize);

            for (int i = 0; i < nSize; i++)
            {
                for (int j = 0; j < nSize; j++)
                {
                    mRet[i, j] = (i == j) ? 1.0 : 0.0;
                }
            }

            return(mRet);
        }
Esempio n. 9
0
        public MatrixNumeric Transpose()
        {
            MatrixNumeric mRet = new MatrixNumeric(m_nNumColumns, m_nNumRows);

            for (int i = 0; i < m_nNumRows; i++)
            {
                for (int j = 0; j < m_nNumColumns; j++)
                {
                    mRet[j, i] = this[i, j];
                }
            }

            return(mRet);
        }
Esempio n. 10
0
        public static double[,] ToDoubleArray(MatrixNumeric mLeft)
        {
            double[,] dRet = new double[mLeft.NumRows, mLeft.NumColumns];

            for (int i = 0; i < mLeft.NumRows; i++)
            {
                for (int j = 0; j < mLeft.NumColumns; j++)
                {
                    dRet[i, j] = mLeft[i, j];
                }
            }

            return(dRet);
        }
Esempio n. 11
0
        public static double[] Regress(this double[] dX, double[] dY, int polyOrder)
        {
            int nPolyOrder = polyOrder;

            double[,] dZ = new double[dY.Length, nPolyOrder + 1];

            var l = dY.Length;

            for (int i = 0; i < l; i++)
            {
                for (int j = 0; j < nPolyOrder + 1; j++)
                {
                    dZ[i, j] = j == 1 ? dX[i] : j == 2 ? dX[i] * dX[i] : Math.Pow(dX[i], (double)j);
                }
            }
            return(MatrixNumeric.Regress(dZ, dY));
        }
Esempio n. 12
0
        public static MatrixNumeric Subtract(MatrixNumeric mLeft, MatrixNumeric mRight)
        {
            Debug.Assert(mLeft.NumColumns == mRight.NumColumns);

            Debug.Assert(mLeft.NumRows == mRight.NumRows);

            MatrixNumeric mRet = new MatrixNumeric(mLeft.NumRows, mRight.NumColumns);

            for (int i = 0; i < mLeft.NumRows; i++)
            {
                for (int j = 0; j < mLeft.NumColumns; j++)
                {
                    mRet[i, j] = mLeft[i, j] - mRight[i, j];
                }
            }

            return(mRet);
        }
Esempio n. 13
0
        public static MatrixNumeric FromDoubleArray(double[,] dLeft)
        {
            int nLength0 = dLeft.GetLength(0);

            int nLength1 = dLeft.GetLength(1);

            MatrixNumeric mRet = new MatrixNumeric(nLength0, nLength1);

            for (int i = 0; i < nLength0; i++)
            {
                for (int j = 0; j < nLength1; j++)
                {
                    mRet[i, j] = dLeft[i, j];
                }
            }

            return(mRet);
        }
Esempio n. 14
0
        public static MatrixNumeric Multiply(MatrixNumeric mLeft, MatrixNumeric mRight)
        {
            Debug.Assert(mLeft.NumColumns == mRight.NumRows);

            MatrixNumeric mRet = new MatrixNumeric(mLeft.NumRows, mRight.NumColumns);

            for (int i = 0; i < mRight.NumColumns; i++)
            {
                for (int j = 0; j < mLeft.NumRows; j++)
                {
                    double dValue = 0.0;

                    for (int k = 0; k < mRight.NumRows; k++)
                    {
                        dValue += mLeft[j, k] * mRight[k, i];
                    }

                    mRet[j, i] = dValue;
                }
            }

            return(mRet);
        }
Esempio n. 15
0
 public static MatrixNumeric operator -(MatrixNumeric mLeft, MatrixNumeric mRight)
 {
     return(MatrixNumeric.Subtract(mLeft, mRight));
 }
Esempio n. 16
0
        private LUDecompositionResults LUDecompose()
        {
            Debug.Assert(m_nNumColumns == m_nNumRows);

            // Using Crout Decomp with P

            //

            //  Ax = b   //By definition of problem variables.

            //

            //  LU = PA   //By definition of L, U, and P.

            //

            //  LUx = Pb  //By substition for PA.

            //

            //  Ux = d   //By definition of d

            //

            //  Ld = Pb   //By subsitition for d.

            //



            //For 4x4 with P = I



            //  [l11 0   0   0  ]  [1 u12 u13 u14]   [a11 a12 a13 a14]

            //  [l21 l22 0   0  ]  [0 1   u23 u24] = [a21 a22 a23 a24]

            //  [l31 l32 l33 0  ]  [0 0   1   u34]   [a31 a32 a33 a34]

            //  [l41 l42 l43 l44]  [0 0   0   1  ]   [a41 a42 a43 a44]



            LUDecompositionResults resRet = new LUDecompositionResults();

            int[] nP = new int[m_nNumRows]; //Pivot matrix.

            MatrixNumeric mU = new MatrixNumeric(m_nNumRows, m_nNumColumns);

            MatrixNumeric mL = new MatrixNumeric(m_nNumRows, m_nNumColumns);

            MatrixNumeric mUWorking = Clone();

            MatrixNumeric mLWorking = new MatrixNumeric(m_nNumRows, m_nNumColumns);

            for (int i = 0; i < m_nNumRows; i++)
            {
                nP[i] = i;
            }



            //Iterate down the number of rows in the U matrix.

            for (int i = 0; i < m_nNumRows; i++)
            {
                //Do pivots first.

                //I want to make the matrix diagnolaly dominate.



                //Initialize the variables used to determine the pivot row.

                double dMaxRowRatio = double.NegativeInfinity;

                int nMaxRow = -1;

                int nMaxPosition = -1;

                //Check all of the rows below and including the current row

                //to determine which row should be pivoted to the working row position.

                //The pivot row will be set to the row with the maximum ratio

                //of the absolute value of the first column element divided by the

                //sum of the absolute values of the elements in that row.



                for (int j = i; j < m_nNumRows; j++)
                {
                    //Store the sum of the absolute values of the row elements in

                    //dRowSum.  Clear it out now because I am checking a new row.

                    double dRowSum = 0.0;

                    //Go across the columns, add the absolute values of the elements in

                    //that column to dRowSum.

                    for (int k = i; k < m_nNumColumns; k++)
                    {
                        dRowSum += Math.Abs(mUWorking[nP[j], k]);
                    }



                    //Check to see if the absolute value of the ratio of the lead

                    //element over the sum of the absolute values of the elements is larger

                    //that the ratio for preceding rows.  If it is, then the current row

                    //becomes the new pivot candidate.

                    if (Math.Abs(mUWorking[nP[j], i] / dRowSum) > dMaxRowRatio)
                    {
                        dMaxRowRatio = Math.Abs(mUWorking[nP[j], i] / dRowSum);

                        nMaxRow = nP[j];

                        nMaxPosition = j;
                    }
                }



                //If the pivot candidate isn't the current row, update the

                //pivot array to swap the current row with the pivot row.

                if (nMaxRow != nP[i])
                {
                    int nHold = nP[i];

                    nP[i] = nMaxRow;

                    nP[nMaxPosition] = nHold;
                }



                //Store the value of the left most element in the working U

                //matrix in dRowFirstElementValue.

                double dRowFirstElementValue = mUWorking[nP[i], i];

                //Update the columns of the working row.  j is the column index.

                for (int j = 0; j < m_nNumRows; j++)
                {
                    if (j < i)
                    {
                        //If j<1, then the U matrix element value is 0.

                        mUWorking[nP[i], j] = 0.0;
                    }
                    else if (j == i)
                    {
                        //If i == j, the L matrix value is the value of the

                        //element in the working U matrix.

                        mLWorking[nP[i], j] = dRowFirstElementValue;

                        //The value of the U matrix for i == j is 1

                        mUWorking[nP[i], j] = 1.0;
                    }
                    else // j>i

                    {
                        //Divide each element in the current row of the U matrix by the

                        //value of the first element in the row

                        mUWorking[nP[i], j] /= dRowFirstElementValue;

                        //The element value of the L matrix for j>i is 0

                        mLWorking[nP[i], j] = 0.0;
                    }
                }



                //For the working U matrix, subtract the ratioed active row from the rows below it.

                //Update the columns of the rows below the working row.  k is the row index.

                for (int k = i + 1; k < m_nNumRows; k++)
                {
                    //Store the value of the first element in the working row

                    //of the U matrix.

                    dRowFirstElementValue = mUWorking[nP[k], i];

                    //Go accross the columns of row k.

                    for (int j = 0; j < m_nNumRows; j++)
                    {
                        if (j < i)
                        {
                            //If j<1, then the U matrix element value is 0.

                            mUWorking[nP[k], j] = 0.0;
                        }
                        else if (j == i)
                        {
                            //If i == j, the L matrix value is the value of the

                            //element in the working U matrix.

                            mLWorking[nP[k], j] = dRowFirstElementValue;

                            //The element value of the L matrix for j>i is 0

                            mUWorking[nP[k], j] = 0.0;
                        }
                        else //j>i

                        {
                            mUWorking[nP[k], j] = mUWorking[nP[k], j] - dRowFirstElementValue * mUWorking[nP[i], j];
                        }
                    }
                }
            }



            for (int i = 0; i < m_nNumRows; i++)
            {
                for (int j = 0; j < m_nNumRows; j++)
                {
                    mU[i, j] = mUWorking[nP[i], j];

                    mL[i, j] = mLWorking[nP[i], j];
                }
            }



            resRet.U = mU;

            resRet.L = mL;

            resRet.PivotArray = nP;



            return(resRet);
        }
Esempio n. 17
0
        public MatrixNumeric SolveFor(MatrixNumeric mRight)
        {
            Debug.Assert(mRight.NumRows == m_nNumColumns);

            Debug.Assert(m_nNumColumns == m_nNumRows);

            MatrixNumeric mRet = new MatrixNumeric(m_nNumColumns, mRight.NumColumns);



            LUDecompositionResults resDecomp = LUDecompose();

            int[] nP = resDecomp.PivotArray;

            MatrixNumeric mL = resDecomp.L;

            MatrixNumeric mU = resDecomp.U;



            double dSum = 0.0;



            for (int k = 0; k < mRight.NumColumns; k++)
            {
                //Solve for the corresponding d Matrix from Ld=Pb

                MatrixNumeric D = new MatrixNumeric(m_nNumRows, 1);

                D[0, 0] = mRight[nP[0], k] / mL[0, 0];

                for (int i = 1; i < m_nNumRows; i++)
                {
                    dSum = 0.0;

                    for (int j = 0; j < i; j++)
                    {
                        dSum += mL[i, j] * D[j, 0];
                    }

                    D[i, 0] = (mRight[nP[i], k] - dSum) / mL[i, i];
                }



                //Solve for x using Ux = d

                //DMatrix X = new DMatrix(m_nNumRows, 1);

                mRet[m_nNumRows - 1, k] = D[m_nNumRows - 1, 0];

                for (int i = m_nNumRows - 2; i >= 0; i--)
                {
                    dSum = 0.0;

                    for (int j = i + 1; j < m_nNumRows; j++)
                    {
                        dSum += mU[i, j] * mRet[j, k];
                    }

                    mRet[i, k] = D[i, 0] - dSum;
                }
            }



            return(mRet);
        }
Esempio n. 18
0
 public static MatrixNumeric operator /(MatrixNumeric mLeft, double dRight)
 {
     return(MatrixNumeric.Divide(mLeft, dRight));
 }
Esempio n. 19
0
 public static MatrixNumeric operator *(MatrixNumeric mLeft, double dRight)
 {
     return(MatrixNumeric.Multiply(mLeft, dRight));
 }
Esempio n. 20
0
 public static MatrixNumeric operator *(double dLeft, MatrixNumeric mRight)
 {
     return(MatrixNumeric.Multiply(dLeft, mRight));
 }
Esempio n. 21
0
 public static MatrixNumeric operator +(MatrixNumeric mLeft, MatrixNumeric mRight)
 {
     return(MatrixNumeric.Add(mLeft, mRight));
 }