Esempio n. 1
0
        /// <summary>
        /// Finds the splitup vector of the Target program using the programs of the Testbed as generators. Solves the Ax=Y equation using the simplex. Also finds the error vector E, defined as E=|Ax-Y|.
        /// </summary>
        /// <returns>true if the simplex found a solution</returns>
        public bool FindSplitup(bool cone)
        {
            // do we have at least 1 program in the testbed?
            if (Testbed.Length < 1)
                return false;
            int resources = Testbed[0].Measures.Length;
            // does every program have the same number of measured resources?
            foreach (var item in Testbed)
            {
                if (item.Measures == null || item.Measures.Length != resources)
                    return false;
            }
            // check target program
            if (Target == null || Target.Measures == null)
                return false;
            if (Target.Measures.Length != resources)
                return false;

            // input looks fine.. let' s build the LP problem
            // how many columns?
            // 1 column for every program
            // + 2 for every resource
            // this is a trick to transform the absolute value (non linear function) into a linear function,
            // so we can apply the simplex, see APPLIED MATHEMATICAL PROGRAMMING USING ALGEBRAIC SYSTEMS, CHAPTER IX: Linear Programming Modeling: non linearities and approximation, B. McCarl and T. Spreen
            // URL: http://chentserver.uwaterloo.ca/aelkamel/che720/che725-process-optimization/GAMS-tutorials/Bruce/thebook.pdf
            int programs = Testbed.Length;
            int errorVariables = resources * 2;
            int columns = programs + errorVariables;
            // Normalize testbed and target
            Program[] NormalizedTestbed = new Program[Testbed.Length];
            Program NormTarget = new Program();
            NormTarget.Measures = new double[resources];
            for (int i = 0; i < Testbed.Length; i++)
            {
                NormalizedTestbed[i] = new Program();
                NormalizedTestbed[i].Measures = new double[resources];
            }
            for (int i = 0; i < resources; i++)
            {
                double max = 0.0000001;
                for (int j = 0; j < Testbed.Length; j++)
                {
                    if (Testbed[j].Measures[i] > max)
                        max = Testbed[j].Measures[i];
                }
                for (int j = 0; j < Testbed.Length; j++)
                {
                    NormalizedTestbed[j].Measures[i] = Testbed[j].Measures[i] / max;
                }
                NormTarget.Measures[i] = Target.Measures[i] / max;
            }

            List<int> ia = new List<int>();
            List<int> ja = new List<int>();
            List<double> ar = new List<double>();
            // glpk counts from 1 to n, not from 0 to n-1.. silly boy
            ia.Add(0); ja.Add(0); ar.Add(0);
            for (int column = 0; column < Testbed.Length; column++)
            {
                for (int row = 0; row < resources; row++)
                {
                    // glpk counts from 1 to n, not from 0 to n-1.. silly boy
                    ia.Add(row + 1);
                    ja.Add(column + 1);
                    ar.Add(NormalizedTestbed[column].Measures[row]);
                }
            }
            // now add epsilon+ and epsilon-
            for (int i = 0; i < resources; i++)
            {
                // epsilon+
                ia.Add(i + 1);
                ja.Add(programs + 2*i + 1);
                ar.Add(1);
                // epsilon-
                ia.Add(i + 1);
                ja.Add(programs + 2 * i + 1 + 1);
                ar.Add(-1);
            }
            // the coefficient array, this does not start from 1
            List<double> coeff = new List<double>();
            for (int i = 0; i < Testbed.Length; i++)
            {
                coeff.Add(0);
            }
            for (int i = 0; i < errorVariables; i++)
            {
                coeff.Add(1);
            }
            // the Y array
            List<Proxy.bound> rowBounds = new List<Proxy.bound>();
            foreach (var item in NormTarget.Measures)
            {
                Proxy.bound b = new Proxy.bound();
                b.BoundType = BOUNDSTYPE.Fixed;
                b.lower = item;
                b.upper = item;
                rowBounds.Add(b);
            }
            List<Proxy.bound> colBounds = new List<Proxy.bound>();
            int firstColumnBound = cone ? 0 : programs;
            for (int i = firstColumnBound; i < columns; i++)
            {
                Proxy.bound b = new Proxy.bound();
                b.BoundType = BOUNDSTYPE.Lower;
                b.lower = 0;
                b.upper = 0;
                colBounds.Add(b);
            }
            Proxy p = new Proxy();
            Proxy.result result = p.Simplex(
                columns,
                resources,
                OptimisationDirection.MINIMISE,
                rowBounds.ToArray(),
                colBounds.ToArray(),
                ia.ToArray(),
                ja.ToArray(),
                ar.ToArray(),
                coeff.ToArray());
            List<double> splitup = new List<double>();
            for (int i = 0; i < Testbed.Length; i++)
            {
                splitup.Add(result.Columns[i]);
            }
            Splitup = splitup.ToArray();
            TotalError = result.ObjResult;
            List<double> errors = new List<double>();
            for (int i = 0; i < resources; i++)
            {
                double epsilon_plus = result.Columns[programs + i * 2];
                double epsilon_minus = result.Columns[programs + i * 2 + 1];
                errors.Add(epsilon_plus - epsilon_minus);
            }
            Errors = errors.ToArray();
            return true;
        }
Esempio n. 2
0
        /// <summary>
        /// Finds the splitup vector of the Target program using the programs of the Testbed as generators. Solves the Ax=Y equation using the simplex. Also finds the error vector E, defined as E=|Ax-Y|.
        /// </summary>
        /// <returns>true if the simplex found a solution</returns>
        public bool FindSplitup(bool cone)
        {
            // do we have at least 1 program in the testbed?
            if (Testbed.Length < 1)
            {
                return(false);
            }
            int resources = Testbed[0].Measures.Length;

            // does every program have the same number of measured resources?
            foreach (var item in Testbed)
            {
                if (item.Measures == null || item.Measures.Length != resources)
                {
                    return(false);
                }
            }
            // check target program
            if (Target == null || Target.Measures == null)
            {
                return(false);
            }
            if (Target.Measures.Length != resources)
            {
                return(false);
            }

            // input looks fine.. let' s build the LP problem
            // how many columns?
            // 1 column for every program
            // + 2 for every resource
            // this is a trick to transform the absolute value (non linear function) into a linear function,
            // so we can apply the simplex, see APPLIED MATHEMATICAL PROGRAMMING USING ALGEBRAIC SYSTEMS, CHAPTER IX: Linear Programming Modeling: non linearities and approximation, B. McCarl and T. Spreen
            // URL: http://chentserver.uwaterloo.ca/aelkamel/che720/che725-process-optimization/GAMS-tutorials/Bruce/thebook.pdf
            int programs       = Testbed.Length;
            int errorVariables = resources * 2;
            int columns        = programs + errorVariables;

            // Normalize testbed and target
            Program[] NormalizedTestbed = new Program[Testbed.Length];
            Program   NormTarget        = new Program();

            NormTarget.Measures = new double[resources];
            for (int i = 0; i < Testbed.Length; i++)
            {
                NormalizedTestbed[i]          = new Program();
                NormalizedTestbed[i].Measures = new double[resources];
            }
            for (int i = 0; i < resources; i++)
            {
                double max = 0.0000001;
                for (int j = 0; j < Testbed.Length; j++)
                {
                    if (Testbed[j].Measures[i] > max)
                    {
                        max = Testbed[j].Measures[i];
                    }
                }
                for (int j = 0; j < Testbed.Length; j++)
                {
                    NormalizedTestbed[j].Measures[i] = Testbed[j].Measures[i] / max;
                }
                NormTarget.Measures[i] = Target.Measures[i] / max;
            }

            List <int>    ia = new List <int>();
            List <int>    ja = new List <int>();
            List <double> ar = new List <double>();

            // glpk counts from 1 to n, not from 0 to n-1.. silly boy
            ia.Add(0); ja.Add(0); ar.Add(0);
            for (int column = 0; column < Testbed.Length; column++)
            {
                for (int row = 0; row < resources; row++)
                {
                    // glpk counts from 1 to n, not from 0 to n-1.. silly boy
                    ia.Add(row + 1);
                    ja.Add(column + 1);
                    ar.Add(NormalizedTestbed[column].Measures[row]);
                }
            }
            // now add epsilon+ and epsilon-
            for (int i = 0; i < resources; i++)
            {
                // epsilon+
                ia.Add(i + 1);
                ja.Add(programs + 2 * i + 1);
                ar.Add(1);
                // epsilon-
                ia.Add(i + 1);
                ja.Add(programs + 2 * i + 1 + 1);
                ar.Add(-1);
            }
            // the coefficient array, this does not start from 1
            List <double> coeff = new List <double>();

            for (int i = 0; i < Testbed.Length; i++)
            {
                coeff.Add(0);
            }
            for (int i = 0; i < errorVariables; i++)
            {
                coeff.Add(1);
            }
            // the Y array
            List <Proxy.bound> rowBounds = new List <Proxy.bound>();

            foreach (var item in NormTarget.Measures)
            {
                Proxy.bound b = new Proxy.bound();
                b.BoundType = BOUNDSTYPE.Fixed;
                b.lower     = item;
                b.upper     = item;
                rowBounds.Add(b);
            }
            List <Proxy.bound> colBounds = new List <Proxy.bound>();
            int firstColumnBound         = cone ? 0 : programs;

            for (int i = firstColumnBound; i < columns; i++)
            {
                Proxy.bound b = new Proxy.bound();
                b.BoundType = BOUNDSTYPE.Lower;
                b.lower     = 0;
                b.upper     = 0;
                colBounds.Add(b);
            }
            Proxy p = new Proxy();

            Proxy.result result = p.Simplex(
                columns,
                resources,
                OptimisationDirection.MINIMISE,
                rowBounds.ToArray(),
                colBounds.ToArray(),
                ia.ToArray(),
                ja.ToArray(),
                ar.ToArray(),
                coeff.ToArray());
            List <double> splitup = new List <double>();

            for (int i = 0; i < Testbed.Length; i++)
            {
                splitup.Add(result.Columns[i]);
            }
            Splitup    = splitup.ToArray();
            TotalError = result.ObjResult;
            List <double> errors = new List <double>();

            for (int i = 0; i < resources; i++)
            {
                double epsilon_plus  = result.Columns[programs + i * 2];
                double epsilon_minus = result.Columns[programs + i * 2 + 1];
                errors.Add(epsilon_plus - epsilon_minus);
            }
            Errors = errors.ToArray();
            return(true);
        }