Esempio n. 1
0
        public void createFromTopology()
        {
            neuralLayers = new NeuralLayer <T> [topology.LayerCount];
            if (!topology.Verified)
            {
                topology.verify();
            }
            NeuralNode <T> currentNode;
            TopologyEntry  currentEntry;
            int            currentLayer;

            for (int i = 0; i < topology.Count; i++)
            {
                currentEntry = topology.adj_M[i];
                currentLayer = currentEntry.layer;
                if (neuralLayers[currentLayer] == null)
                {
                    if (currentLayer == 0)
                    {
                        neuralLayers[currentLayer] = new InputLayer <T>();
                    }
                    else
                    {
                        neuralLayers[currentLayer] = new NeuralLayer <T>();
                    }
                }

                if (topology.adj_M[i].layer == 0)
                {
                    currentNode = new ConstInputNeuralNode <T>();
                }
                else
                {
                    if (topology.adj_M[i].memoryDepth > 0)
                    {
                        currentNode = new MemoryNode <T>(topology.adj_M[i].memoryDepth);
                    }
                    else
                    {
                        currentNode = new NeuralNode <T>();
                    }
                    foreach (float w in currentEntry.adj_V)
                    {
                        if (!float.IsNaN(w))
                        {
                            currentNode.InputWeigths.Add(w);
                        }
                    }
                }
                neuralLayers[currentLayer].addNode(currentNode);
            }
            for (int i = 1; i < topology.LayerCount; i++)
            {
                neuralLayers[i].inputLayer = neuralLayers[i - 1];
            }
        }
Esempio n. 2
0
        public object Clone()
        {
            NeuralLayer <T> ret = new NeuralLayer <T>();

            for (int i = 0; i < NodeCount; i++)
            {
                ret.addNode(nodes[i].Clone() as NeuralNode <T>);
            }
            if (outputs != null)
            {
                ret.outputs = outputs.Clone() as T[];
            }
            return(ret);
        }