public Point2DList(Point2DList l) { int numPoints = l.Count; for (int i = 0; i < numPoints; ++i) { mPoints.Add(l[i]); } mBoundingBox.Set(l.BoundingBox); mEpsilon = l.Epsilon; mWindingOrder = l.WindingOrder; }
public static void InitializeHoles(List <Contour> holes, ITriangulatable parent, ConstrainedPointSet cps) { int numHoles = holes.Count; int holeIdx = 0; // pass 1 - remove duplicates while (holeIdx < numHoles) { int hole2Idx = holeIdx + 1; while (hole2Idx < numHoles) { bool bSamePolygon = PolygonUtil.PolygonsAreSame2D(holes[holeIdx], holes[hole2Idx]); if (bSamePolygon) { // remove one of them holes.RemoveAt(hole2Idx); --numHoles; } else { ++hole2Idx; } } ++holeIdx; } // pass 2: Intersections and Containment holeIdx = 0; while (holeIdx < numHoles) { bool bIncrementHoleIdx = true; int hole2Idx = holeIdx + 1; while (hole2Idx < numHoles) { if (PolygonUtil.PolygonContainsPolygon(holes[holeIdx], holes[holeIdx].Bounds, holes[hole2Idx], holes[hole2Idx].Bounds, false)) { holes[holeIdx].AddHole(holes[hole2Idx]); holes.RemoveAt(hole2Idx); --numHoles; } else if (PolygonUtil.PolygonContainsPolygon(holes[hole2Idx], holes[hole2Idx].Bounds, holes[holeIdx], holes[holeIdx].Bounds, false)) { holes[hole2Idx].AddHole(holes[holeIdx]); holes.RemoveAt(holeIdx); --numHoles; bIncrementHoleIdx = false; break; } else { bool bIntersect = PolygonUtil.PolygonsIntersect2D(holes[holeIdx], holes[holeIdx].Bounds, holes[hole2Idx], holes[hole2Idx].Bounds); if (bIntersect) { // this is actually an error condition // fix by merging hole1 and hole2 into hole1 (including the holes inside hole2!) and delete hole2 // Then, because hole1 is now changed, restart it's check. PolygonOperationContext ctx = new PolygonOperationContext(); if (!ctx.Init(PolygonUtil.PolyOperation.Union | PolygonUtil.PolyOperation.Intersect, holes[holeIdx], holes[hole2Idx])) { if (ctx.mError == PolygonUtil.PolyUnionError.Poly1InsidePoly2) { holes[hole2Idx].AddHole(holes[holeIdx]); holes.RemoveAt(holeIdx); --numHoles; bIncrementHoleIdx = false; break; } else { throw new Exception("PolygonOperationContext.Init had an error during initialization"); } } PolygonUtil.PolyUnionError pue = PolygonUtil.PolygonOperation(ctx); if (pue == PolygonUtil.PolyUnionError.None) { Point2DList union = ctx.Union; Point2DList intersection = ctx.Intersect; // create a new contour for the union Contour c = new Contour(parent); c.AddRange(union); c.Name = "(" + holes[holeIdx].Name + " UNION " + holes[hole2Idx].Name + ")"; c.WindingOrder = Point2DList.WindingOrderType.Default; // add children from both of the merged contours int numChildHoles = holes[holeIdx].GetNumHoles(); for (int i = 0; i < numChildHoles; ++i) { c.AddHole(holes[holeIdx].GetHole(i)); } numChildHoles = holes[hole2Idx].GetNumHoles(); for (int i = 0; i < numChildHoles; ++i) { c.AddHole(holes[hole2Idx].GetHole(i)); } // make sure we preserve the contours of the intersection Contour cInt = new Contour(c); cInt.AddRange(intersection); cInt.Name = "(" + holes[holeIdx].Name + " INTERSECT " + holes[hole2Idx].Name + ")"; cInt.WindingOrder = Point2DList.WindingOrderType.Default; c.AddHole(cInt); // replace the current contour with the merged contour holes[holeIdx] = c; // toss the second contour holes.RemoveAt(hole2Idx); --numHoles; // current hole is "examined", so move to the next one hole2Idx = holeIdx + 1; } else { throw new Exception("PolygonOperation had an error!"); } } else { ++hole2Idx; } } } if (bIncrementHoleIdx) { ++holeIdx; } } numHoles = holes.Count; holeIdx = 0; while (holeIdx < numHoles) { int numPoints = holes[holeIdx].Count; for (int i = 0; i < numPoints; ++i) { int j = holes[holeIdx].NextIndex(i); uint constraintCode = TriangulationConstraint.CalculateContraintCode(holes[holeIdx][i], holes[holeIdx][j]); TriangulationConstraint tc = null; if (!cps.TryGetConstraint(constraintCode, out tc)) { tc = new TriangulationConstraint(holes[holeIdx][i], holes[holeIdx][j]); cps.AddConstraint(tc); } // replace the points in the holes with valid points if (holes[holeIdx][i].VertexCode == tc.P.VertexCode) { holes[holeIdx][i] = tc.P; } else if (holes[holeIdx][j].VertexCode == tc.P.VertexCode) { holes[holeIdx][j] = tc.P; } if (holes[holeIdx][i].VertexCode == tc.Q.VertexCode) { holes[holeIdx][i] = tc.Q; } else if (holes[holeIdx][j].VertexCode == tc.Q.VertexCode) { holes[holeIdx][j] = tc.Q; } } ++holeIdx; } }
// From Eric Jordan's convex decomposition library /// <summary> /// Merges all parallel edges in the list of vertices /// </summary> /// <param name="tolerance"></param> public void MergeParallelEdges(double tolerance) { if (Count <= 3) { // Can't do anything useful here to a triangle return; } bool[] mergeMe = new bool[Count]; int newNVertices = Count; //Gather points to process for (int i = 0; i < Count; ++i) { int lower = (i == 0) ? (Count - 1) : (i - 1); int middle = i; int upper = (i == Count - 1) ? (0) : (i + 1); double dx0 = this[middle].X - this[lower].X; double dy0 = this[middle].Y - this[lower].Y; double dx1 = this[upper].Y - this[middle].X; double dy1 = this[upper].Y - this[middle].Y; double norm0 = Math.Sqrt(dx0 * dx0 + dy0 * dy0); double norm1 = Math.Sqrt(dx1 * dx1 + dy1 * dy1); if (!(norm0 > 0.0 && norm1 > 0.0) && newNVertices > 3) { //Merge identical points mergeMe[i] = true; --newNVertices; } dx0 /= norm0; dy0 /= norm0; dx1 /= norm1; dy1 /= norm1; double cross = dx0 * dy1 - dx1 * dy0; double dot = dx0 * dx1 + dy0 * dy1; if (Math.Abs(cross) < tolerance && dot > 0 && newNVertices > 3) { mergeMe[i] = true; --newNVertices; } else { mergeMe[i] = false; } } if (newNVertices == Count || newNVertices == 0) { return; } int currIndex = 0; // Copy the vertices to a new list and clear the old Point2DList oldVertices = new Point2DList(this); Clear(); for (int i = 0; i < oldVertices.Count; ++i) { if (mergeMe[i] || newNVertices == 0 || currIndex == newNVertices) { continue; } if (currIndex >= newNVertices) { throw new Exception("Point2DList::MergeParallelEdges - currIndex[ " + currIndex.ToString() + "] >= newNVertices[" + newNVertices + "]"); } mPoints.Add(oldVertices[i]); mBoundingBox.AddPoint(oldVertices[i]); ++currIndex; } mWindingOrder = CalculateWindingOrder(); mEpsilon = CalculateEpsilon(); }
/// <summary> /// Checks if polygon is valid for use in Box2d engine. /// Last ditch effort to ensure no invalid polygons are /// added to world geometry. /// /// Performs a full check, for simplicity, convexity, /// orientation, minimum angle, and volume. This won't /// be very efficient, and a lot of it is redundant when /// other tools in this section are used. /// /// From Eric Jordan's convex decomposition library /// </summary> /// <param name="printErrors"></param> /// <returns></returns> public PolygonError CheckPolygon() { PolygonError error = PolygonError.None; if (Count < 3 || Count > Point2DList.kMaxPolygonVertices) { error |= PolygonError.NotEnoughVertices; // no other tests will be valid at this point, so just return return(error); } if (IsDegenerate()) { error |= PolygonError.Degenerate; } //bool bIsConvex = IsConvex(); //if (!IsConvex()) //{ // error |= PolygonError.NotConvex; //} if (!IsSimple()) { error |= PolygonError.NotSimple; } if (GetArea() < MathUtil.EPSILON) { error |= PolygonError.AreaTooSmall; } // the following tests don't make sense if the polygon is not simple if ((error & PolygonError.NotSimple) != PolygonError.NotSimple) { bool bReversed = false; WindingOrderType expectedWindingOrder = WindingOrderType.CCW; WindingOrderType reverseWindingOrder = WindingOrderType.CW; if (WindingOrder == reverseWindingOrder) { WindingOrder = expectedWindingOrder; bReversed = true; } //Compute normals Point2D[] normals = new Point2D[Count]; Point2DList vertices = new Point2DList(Count); for (int i = 0; i < Count; ++i) { vertices.Add(new Point2D(this[i].X, this[i].Y)); int i1 = i; int i2 = NextIndex(i); Point2D edge = new Point2D(this[i2].X - this[i1].X, this[i2].Y - this[i1].Y); normals[i] = Point2D.Perpendicular(edge, 1.0); normals[i].Normalize(); } //Required side checks for (int i = 0; i < Count; ++i) { int iminus = PreviousIndex(i); //Parallel sides check double cross = Point2D.Cross(normals[iminus], normals[i]); cross = MathUtil.Clamp(cross, -1.0f, 1.0f); float angle = (float)Math.Asin(cross); if (Math.Abs(angle) <= Point2DList.kAngularSlop) { error |= PolygonError.SidesTooCloseToParallel; break; } // For some reason, the following checks do not seem to work // correctly in all cases - they return false positives. // //Too skinny check - only valid for convex polygons // if (bIsConvex) // { // for (int j = 0; j < Count; ++j) // { // if (j == i || j == NextIndex(i)) // { // continue; // } // Point2D testVector = vertices[j] - vertices[i]; // testVector.Normalize(); // double s = Point2D.Dot(testVector, normals[i]); // if (s >= -Point2DList.kLinearSlop) // { // error |= PolygonError.TooThin; // } // } // Point2D centroid = vertices.GetCentroid(); // Point2D n1 = normals[iminus]; // Point2D n2 = normals[i]; // Point2D v = vertices[i] - centroid; // Point2D d = new Point2D(); // d.X = Point2D.Dot(n1, v); // - toiSlop; // d.Y = Point2D.Dot(n2, v); // - toiSlop; // // Shifting the edge inward by toiSlop should // // not cause the plane to pass the centroid. // if ((d.X < 0.0f) || (d.Y < 0.0f)) // { // error |= PolygonError.TooThin; // } // } } if (bReversed) { WindingOrder = reverseWindingOrder; } } //if (error != PolygonError.None) //{ // Console.WriteLine("Found invalid polygon: {0} {1}\n", Point2DList.GetErrorString(error), this.ToString()); //} return(error); }
public virtual void AddRange(Point2DList l) { AddRange(l.mPoints.GetEnumerator(), l.WindingOrder); }