Esempio n. 1
0
        /// <summary>
        /// Interpret an output from neural network in a form of label using tag in EigenValueTags class
        /// </summary>
        /// <param name="eigenVTags">
        /// A <see cref="EigenValueTags"/>
        /// </param>
        /// <param name="f">
        /// A <see cref="System.Double[]"/>
        /// </param>
        /// <returns>
        /// A <see cref="System.String"/>
        /// </returns>
        public string AnalyseNetworkOutput(EigenValueTags eigenVTags, double[] f)
        {
            double max = f[0];
            int maxIndex = 0;

            for(int i=0;i<f.Length;i++){
                if(f[i] > max){
                    maxIndex = i;
                    max = f[i];
                }
            }
            Log.Debug("AnalyseNetwork... max = "+max);

            if(max < 0.70)
                return null;

            string[] labels = eigenVTags.FacesLabel;

            return labels[maxIndex];
        }
Esempio n. 2
0
        /// <summary>
        /// load eigen value in EigenValueTags class
        /// </summary>
        /// <param name="eigenRec">
        /// A <see cref="EigenObjectRecognizer"/>
        /// </param>
        /// <returns>
        /// A <see cref="EigenValueTags"/>
        /// </returns>
        public EigenValueTags RecordEigenValue(EigenObjectRecognizer eigenRec)
        {
            //DELETEME
            //FaceClassifier.WriteEigenValueFile(eigenRec,"","eigenvalue");

            EigenValueTags eigenValueTags = new EigenValueTags();
            const int MAX_EIGEN_LENGTH = 30;
            int nums_train = eigenRec.Labels.Length;

            float[][] eigenMatrix = new float[nums_train][];

            int max_eigenvalueLength = Math.Min(MAX_EIGEN_LENGTH, 4 + nums_train/5);
            if(nums_train < 5)
                max_eigenvalueLength = nums_train;

            for(int i=0;i<nums_train;i++){

                Emgu.CV.Matrix<float> eigenValue = eigenRec.EigenValues[i];

                float[] temp = new float[max_eigenvalueLength];

                for(int k=0; k<max_eigenvalueLength; k++){
                    temp[k] = eigenValue.Data[k,0];
                }
                eigenValueTags.Add(new VTag(temp, eigenRec.Labels[i]));

            }
            Log.Debug("eigenVTags Length = "+ eigenValueTags.eigenTaglist.Count);
            return eigenValueTags;
        }
Esempio n. 3
0
        /// <summary>
        /// train and save as the spcified path
        /// </summary>
        /// <param name="eigen">
        /// A <see cref="EigenValueTags"/>
        /// </param>
        private static void TrainNetwork(EigenValueTags eigen)
        {
            Log.Debug("================ Train Started ================ ");

            string[] dLabels = eigen.FacesLabel;
            int numInstances = eigen.eigenTaglist.Count;
            int inputNodes = eigen.eigenTaglist[0].val.Length;
            int outputNodes = dLabels.Length;
            int hiddenNodes = inputNodes+outputNodes;

            float[][] trainInput = new float[numInstances][];
            float[][] trainOutput = new float[numInstances][];

            //Random r = new Random();
            int numstrain = 0;
            for(int i=0;i<numInstances;i++){

                trainInput[numstrain] = new float[inputNodes];
                trainOutput[numstrain] = new float[outputNodes];

                for(int j=0;j<dLabels.Length;j++){
                    if(eigen.eigenTaglist[i].tag.Equals(dLabels[j]))
                        trainOutput[numstrain][j] = 0.9f;
                    else
                        trainOutput[numstrain][j] = 0.1f;
                }

                for(int j=0;j<inputNodes;j++){
                    trainInput[numstrain][j] = eigen.eigenTaglist[i].val[j];
                }
                numstrain++;
            }

            // convert to double
            Log.Debug("nums train = "+ numstrain);
            double[][] trainInputD = new double[numstrain][];
            double[][] trainOutputD = new double[numstrain][];
            for(int i=0;i<numstrain;i++){
                trainInputD[i] = new double[inputNodes];
                trainOutputD[i] = new double[outputNodes];
                for(int j=0;j<outputNodes;j++){
                    trainOutputD[i][j] = trainOutput[i][j];
                }

                for(int j=0;j<inputNodes;j++){
                    trainInputD[i][j] = trainInput[i][j];
                }
            }

            //			TimeSpan tp = System.DateTime.Now.TimeOfDay;

            Log.Debug("#in = {0}, #hid = {1}, #out = {2}",inputNodes,hiddenNodes,outputNodes);
            NeuronDotNet.Core.Backpropagation.SigmoidLayer inputLayer = new NeuronDotNet.Core.Backpropagation.SigmoidLayer(inputNodes);
            NeuronDotNet.Core.Backpropagation.SigmoidLayer hiddenlayer = new NeuronDotNet.Core.Backpropagation.SigmoidLayer(hiddenNodes);
            NeuronDotNet.Core.Backpropagation.SigmoidLayer outputlayer = new NeuronDotNet.Core.Backpropagation.SigmoidLayer(outputNodes);
            Log.Debug("BackpropagationConnector input_hidden =  new BackpropagationConnector(inputLayer, hiddenlayer);");
            BackpropagationConnector input_hidden =  new BackpropagationConnector(inputLayer, hiddenlayer);
            BackpropagationConnector hidden_output =  new BackpropagationConnector(hiddenlayer, outputlayer);

            input_hidden.Momentum = 0.3;
            hidden_output.Momentum = 0.3;
            Log.Debug("bpnet = new BackpropagationNetwork(inputLayer,outputlayer);");
            bpnet = new BackpropagationNetwork(inputLayer,outputlayer);
            Log.Debug("TrainingSet tset = new TrainingSet(inputNodes, outputNodes);");
            TrainingSet tset = new TrainingSet(inputNodes, outputNodes);
            for(int i=0;i<numstrain;i++)
                tset.Add(new TrainingSample(trainInputD[i], trainOutputD[i]));

            // prevent getting stuck in local minima
            bpnet.JitterNoiseLimit = 0.0001;
            bpnet.Initialize();

            int numEpoch = 200;
            bpnet.SetLearningRate(0.2);
            bpnet.Learn(tset, numEpoch);

            //			Log.Debug("error = {0}",bpnet.MeanSquaredError);

            //			string savepath = facedbPath + "object/";
            //			if(!Directory.Exists(savepath))
            //				Directory.CreateDirectory(savepath);

            // Serialize
            string path = Path.Combine (FSpot.Global.BaseDirectory, "ann.dat");
            SerializeUtil.Serialize(path, bpnet);

            // Deserialize
            //BackpropagationNetwork testnet = (BackpropagationNetwork)SerializeUtil.DeSerialize("nn.dat");
            //			Log.Debug("error = {0}",bpnet.MeanSquaredError);
            //bpnet = (BackpropagationNetwork)SerializeUtil.DeSerialize("/home/hyperjump/nn.dat");
            //Log.Debug("error = {0}",bpnet.MeanSquaredError);

            // test by using training data
            //			int correct = 0;
            //			for(int i=0;i<numInstances;i++){
            //
            //				double[] v = new double[inputNodes];
            //				for(int j=0;j<v.Length;j++){
            //					v[j] = (double)eigen.eigenTaglist[i].val[j];
                    //Console.Write("{0},",v[j]);
            //				}
                //Console.WriteLine();

            //				double[] netOutput = bpnet.Run(v);
                //Console.WriteLine("net out:");
            //				for(int j=0;j<netOutput.Length;j++)
            //					Console.Write("{0},",netOutput[j]);

            //				string result = FaceClassifier.Instance.AnalyseNetworkOutput(eigen, netOutput);
            //				if(eigen.eigenTaglist[i].tag.Equals(result))
            //					correct++;
            //			}
            //			Log.Debug("% correct = " + (float)correct/(float)numInstances * 100);

            //Save Train Status

            Log.Debug("Saving Train Status...");

            List<Tstate> tstateList = new List<Tstate>();
            int[] num = new int[dLabels.Length];
            Log.Debug("num length = {0}",num.Length);

            foreach(VTag vt in eigen.eigenTaglist){
                for(int k=0;k<num.Length;k++)
                    if(vt.tag.Equals(dLabels[k]))
                        num[k]++;
            }
            for(int k=0;k<dLabels.Length;k++){
                tstateList.Add(new Tstate(dLabels[k], num[k]));
            }

            FaceSpotDb.Instance.TrainingData.Trainstat = tstateList;

            //			Log.Debug("time ="+  System.DateTime.Now.TimeOfDay.Subtract(tp));
            Log.Debug("================ Train ended ================ ");
        }