Esempio n. 1
0
        public double buildSVMTestCorpus(string filename)
        {
            double total = 0, tp = 0;
            string trainDataPath = filename + "SimpleTrainSVM.txt";

            if (File.Exists(trainDataPath))
            {
                _test = ProblemHelper.ReadProblem(trainDataPath);
                _test = ProblemHelper.ScaleProblem(_test);
                svm_node[][] sn = _test.x;
                total = sn.Length;
                double[] lbls = _test.y;
                for (int i = 0; i < sn.Length; i++)
                {
                    if (_test.y[i] == svm.Predict(sn[i]))
                    {
                        tp++;
                    }
                }
                fileExistance = true;
                //ProblemHelper.WriteProblem(filename+"TestSVM.txt", _test);
            }
            else
            {
                SVMScale readyData = new SVMScale();
                readyData.buildSVMCorpus(filename);
                readyData.scaleSVMData(filename);
                buildSVMTestCorpus(filename);
            }
            return((tp / total) * 100);
        }
Esempio n. 2
0
        public bool startRealtimeSVM(string id, string name)
        {
            EmoEngine engine = EmoEngine.Instance;

            engine.UserAdded += new EmoEngine.UserAddedEventHandler(engine_UserAdded_Event);
            engine.Connect();
            EdkDll.IEE_DataChannel_t[] channelList = new EdkDll.IEE_DataChannel_t[5] {
                EdkDll.IEE_DataChannel_t.IED_AF3, EdkDll.IEE_DataChannel_t.IED_AF4, EdkDll.IEE_DataChannel_t.IED_T7,
                EdkDll.IEE_DataChannel_t.IED_T8, EdkDll.IEE_DataChannel_t.IED_O1
            };
            bool ready = false;

            ready = svm.buildSVMCorpus(name);
            if (!ready)
            {
                svmscale.buildSVMCorpus(name);
                svmscale.scaleSVMData(name);
                startRealtimeSVM(id, name);
            }
            IntPtr state = new IntPtr(1);
            Thread newThread;
            int    itr = 0;

            double[] alpha     = new double[1];
            double[] low_beta  = new double[1];
            double[] high_beta = new double[1];
            double[] gamma     = new double[1];
            double[] theta     = new double[1];
            double[] data      = new double[25];
            while (ready)
            {
                itr++;
                //if (EdkDll.IS_FacialExpressionIsLeftWink(state))
                //  MessageBox.Show("Left Eye Wink Detected!");

                //if (EdkDll.IS_FacialExpressionIsRightWink(state))
                // MessageBox.Show("Right Eye Wink Detected!");
                engine.ProcessEvents(10);

                if (userID < 0)
                {
                    continue;
                }
                for (int i = 0, j = 0; i < 5; i++)
                {
                    engine.IEE_GetAverageBandPowers((uint)userID, channelList[i], theta, alpha, low_beta, high_beta, gamma);
                    data[j++] = theta[0];
                    data[j++] = alpha[0];
                    data[j++] = low_beta[0];
                    data[j++] = high_beta[0];
                    data[j++] = gamma[0];
                }
                //up simple data taken form karrarUp.csv
                //

                //data = new double[] { 4.651620563, 5.212359266, 10.90409395, 5.157308481, 4.170539408, 5.10950104, 6.035994062, 12.41738389, 4.743290343, 3.866878481, 2.873242245, 4.77619567, 2.151664297, 1.760807141, 3.082304127, 3.986381183, 10.31494602, 9.029601134, 2.233667016, 2.991145428, 0.244647851, 0.618714049, 0.239897275, 0.36874583, 0.333496459 };
                //data = new double[] { 3.465019915, 1.931854818, 3.448097045, 1.47996222, 1.137614759, 5.230779949, 2.01443672, 2.395593998, 1.310546988, 0.988700891, 6.74993337, 5.037963203, 1.074775069, 0.615915165, 0.920866746, 6.755586104, 5.014666624, 2.568192279, 1.08015653, 0.931508695, 500, 500, 500, 269.375212, 85.55572135 };
                //data=new double [] { 2.254629381, 1.60659665,  1.328094785, 1.882520841, 1.027082428, 2.57410163,  2.209505082, 1.17652227,  0.9200791,   0.524185866, 2.047865372, 1.76506681,  1.091739745, 0.690766561, 0.820688245, 1.643871005, 5.476966707, 1.084435047, 1.055108772, 0.556177084, 335.9026309, 186.3244237, 140.337729,  67.65089061, 25.64029729 };

                if (data[0] != 0 && data[24] != 0)
                {
                    newThread = new Thread(() => Form1.Instance.moveObject(svm.svmRealTimeTest(data)));
                    newThread.Start();
                    //newThread = new Thread(() => Form1.Instance.moveObject(knn.knnClassifier(pca.testDataPCA(data))));
                }
                Thread.Sleep(2000);
                //ready = false;
            }
            return(ready);
        }