Esempio n. 1
0
        /// <summary>
        /// Get the default Decision tree training parameters
        /// </summary>
        /// <returns>The default Decision tree training parameters</returns>
        public static MCvDTreeParams GetDefaultParameter()
        {
            IntPtr         ptr = MlInvoke.CvDTreeParamsCreate();
            MCvDTreeParams p   = (MCvDTreeParams)Marshal.PtrToStructure(ptr, typeof(MCvDTreeParams));

            MlInvoke.CvDTreeParamsRelease(ptr);
            return(p);
        }
Esempio n. 2
0
 /// <summary>
 /// Train the decision tree using the specific traning data
 /// </summary>
 /// <param name="trainData">The training data. A 32-bit floating-point, single-channel matrix, one vector per row</param>
 /// <param name="tflag">data layout type</param>
 /// <param name="responses">A floating-point matrix of the corresponding output vectors, one vector per row. </param>
 /// <param name="varIdx">Can be null if not needed. When specified, identifies variables (features) of interest. It is a Matrix&gt;int&lt; of nx1</param>
 /// <param name="sampleIdx">Can be null if not needed. When specified, identifies samples of interest. It is a Matrix&gt;int&lt; of nx1</param>
 /// <param name="varType">The types of input variables</param>
 /// <param name="missingMask">Can be null if not needed. When specified, it is an 8-bit matrix of the same size as <paramref name="trainData"/>, is used to mark the missed values (non-zero elements of the mask)</param>
 /// <param name="param">The parameters for training the decision tree</param>
 /// <returns></returns>
 public bool Train(
     Matrix<float> trainData,
     MlEnum.DATA_LAYOUT_TYPE tflag,
     Matrix<float> responses,
     Matrix<Byte> varIdx,
     Matrix<Byte> sampleIdx,
     Matrix<Byte> varType,
     Matrix<Byte> missingMask,
     MCvDTreeParams param)
 {
     return MlInvoke.CvDTreeTrain(
     _ptr,
     trainData.Ptr,
     tflag,
     responses.Ptr,
     varIdx == null ? IntPtr.Zero : varIdx.Ptr,
     sampleIdx == null ? IntPtr.Zero : sampleIdx.Ptr,
     varType == null ? IntPtr.Zero : varType.Ptr,
     missingMask == null ? IntPtr.Zero : missingMask.Ptr,
     param);
 }
Esempio n. 3
0
        public void TestDTreesMushroom()
        {
            Matrix<float> data, response;
             ReadMushroomData(out data, out response);

             //Use the first 80% of data as training sample
             int trainingSampleCount = (int)(data.Rows * 0.8);

             Matrix<Byte> varType = new Matrix<byte>(data.Cols + 1, 1);
             varType.SetValue((byte)MlEnum.VAR_TYPE.CATEGORICAL); //the data is categorical

             Matrix<byte> sampleIdx = new Matrix<byte>(data.Rows, 1);
             using (Matrix<byte> sampleRows = sampleIdx.GetRows(0, trainingSampleCount, 1))
            sampleRows.SetValue(255);

             float[] priors = new float[] {1, 0.5f};
             GCHandle priorsHandle = GCHandle.Alloc(priors, GCHandleType.Pinned);

             MCvDTreeParams param = new MCvDTreeParams();
             param.maxDepth = 8;
             param.minSampleCount = 10;
             param.regressionAccuracy = 0;
             param.useSurrogates = true;
             param.maxCategories = 15;
             param.cvFolds = 10;
             param.use1seRule = true;
             param.truncatePrunedTree = true;
             param.priors = priorsHandle.AddrOfPinnedObject();

             using (DTree dtree = new DTree())
             {
            bool success = dtree.Train(
               data,
               Emgu.CV.ML.MlEnum.DATA_LAYOUT_TYPE.ROW_SAMPLE,
               response,
               null,
               sampleIdx,
               varType,
               null,
               param);

            if (!success) return;
            double trainDataCorrectRatio = 0;
            double testDataCorrectRatio = 0;
            for (int i = 0; i < data.Rows; i++)
            {
               using (Matrix<float> sample = data.GetRow(i))
               {
                  double r = dtree.Predict(sample, null, false).value;
                  r = Math.Abs(r - response[i, 0]);
                  if (r < 1.0e-5)
                  {
                     if (i < trainingSampleCount)
                        trainDataCorrectRatio++;
                     else
                        testDataCorrectRatio++;
                  }
               }
            }

            trainDataCorrectRatio /= trainingSampleCount;
            testDataCorrectRatio /= (data.Rows - trainingSampleCount);

            Trace.WriteLine(String.Format("Prediction accuracy for training data :{0}%", trainDataCorrectRatio*100));
            Trace.WriteLine(String.Format("Prediction accuracy for test data :{0}%", testDataCorrectRatio*100));
             }

             priorsHandle.Free();
        }
Esempio n. 4
0
 public static extern bool CvDTreeTrain(
     IntPtr model,
     IntPtr trainData,
     MlEnum.DATA_LAYOUT_TYPE tflag,
     IntPtr responses,
     IntPtr varIdx,
     IntPtr sampleIdx,
     IntPtr varType,
     IntPtr missingMask,
     MCvDTreeParams param);