Esempio n. 1
0
        //Generates the response training data
        public static void GenerateTrainingData(PhysicallyUncloneableFunction aPUF, double[][] trainingData, double[][] trainingResponse, Random randomGenerator)
        {
            int trainingSize = trainingData.Length;
            int bitNum       = aPUF.BitNumber;

            for (int i = 0; i < trainingSize; i++)
            {
                trainingData[i]        = GenerateRandomPhiVector(bitNum, randomGenerator);
                trainingResponse[i]    = new double[1];
                trainingResponse[i][0] = aPUF.ComputeResponse(trainingData[i]);
            }
        }
Esempio n. 2
0
        //Generates the reliability training data as done in Becker's paper, does m/2 - sum(r) calculation
        public static void GenerateReliabilityTrainingData(PhysicallyUncloneableFunction aPUF, int numberOfMeasurements, double[][] trainingData, double[][] trainingReliability, Random randomGenerator)
        {
            int trainingSize = trainingData.Length;
            int bitNum       = aPUF.BitNumber;

            for (int i = 0; i < trainingSize; i++)
            {
                double sumOfResponses = 0;
                //trainingData[i] = GenerateRandomPhiVector(bitNum);
                trainingData[i] = GenerateRandomPhiVector(bitNum, randomGenerator);
                for (int m = 0; m < numberOfMeasurements; m++)
                {
                    sumOfResponses = sumOfResponses + aPUF.ComputeNoisyResponse(trainingData[i]); //sum the measurements
                }
                trainingReliability[i] = new double[1];
                //trainingReliability[i][0] = sumOfResponses / (double)numberOfMeasurements;
                //trainingReliability[i][0] = Math.Abs(numberOfMeasurements / 2.0 - (sumOfResponses / (double)numberOfMeasurements));
                trainingReliability[i][0] = Math.Abs(numberOfMeasurements / 2.0 - sumOfResponses);
            }
        }