Esempio n. 1
0
        public int CompareTo(object obj)
        {
            CMAESCandidate other = (CMAESCandidate)obj;

            return(this.ObjFunctionValue.CompareTo(other.ObjFunctionValue)); //sorts in acsending, array index of 0 with be highest.
                                                                             // returns 0 if equal, -1 if less, and 1 if greater.
        }
Esempio n. 2
0
        public object Clone()
        {
            CMAESCandidate candidateCopy = new CMAESCandidate(WeightVector, TrainingData, Targets, FunctionP);

            return(candidateCopy);
        }
Esempio n. 3
0
        public static CMAESCandidate ComputeCMAES(int dimensionNumber, PUFObjectiveFunction pFunction, double[][] trainingData, double[][] targets, double[] initialWeightVector, Random randomGenerator)
        {
            int             n     = dimensionNumber; //number of weights + epsilon
            Matrix <double> xMean = Matrix <double> .Build.Dense(n, 1);

            CMAESCandidate c11 = new CMAESCandidate(initialWeightVector, trainingData, targets, pFunction);

            Console.Out.WriteLine("Starting Point Accuracy");
            Console.Out.WriteLine(c11.GetObjectiveFunctionValue().ToString());

            CMAESCandidate globalBestCandidate = null;

            double sigma = 0.5;
            //double stopfitness = 1e-10;
            //double stopfitness = 0.99;
            double stopfitness = double.MaxValue;
            int    stopeval    = 1000; //originally was 30000
            //double stopeval = AppConstants.MaxEvaluations
            //Strategy parameter setting: Selection
            int lambdaVal = (int)(4.0 + Math.Floor(3.0 * Math.Log(n)));  //population size, note lambda keyword reserved by python so lambda->lambdaVal
            //lambdaVal = AppConstants.PopulationSizeCMAES #change by KRM cause I think we need more sampling
            double          mu      = lambdaVal / 2.0;
            Matrix <double> weights = Matrix <double> .Build.Dense((int)mu, 1);  //weights = numpy.matrix(weightsPrime, dtype = float).reshape(mu, 1)

            for (int i = 0; i < (int)mu; i++)
            {
                weights[i, 0] = Math.Log(mu + 0.5) - Math.Log(i + 1); //weights[i, 0] = math.log(mu + 0.5) - math.log((i + 1))#use i+1 instead of i in this case to match matlab indexing
            }
            mu = Math.Floor(mu);
            double sumWeights = 0.0;

            for (int i = 0; i < weights.RowCount; i++)
            {
                sumWeights = sumWeights + weights[i, 0];
            }
            //Divide by the sum
            for (int i = 0; i < weights.RowCount; i++)
            {
                weights[i, 0] = weights[i, 0] / sumWeights;
            }
            //Computation for the mueff variable
            double mueffNum = 0.0;
            double mueffDem = 0.0;

            for (int i = 0; i < weights.RowCount; i++)
            {
                mueffNum = weights[i, 0] + mueffNum;
                mueffDem = weights[i, 0] * weights[i, 0] + mueffDem;
            }
            mueffNum = mueffNum * mueffNum;
            double mueff = mueffNum / mueffDem;

            // Strategy parameter setting: Adaptation
            double cc    = (4.0 + mueff / n) / (n + 4.0 + 2.0 * mueff / n);                                     //#time constant for cumulation for C
            double cs    = (mueff + 2.0) / (n + mueff + 5.0);                                                   //#t-const for cumulation for sigma control
            double c1    = 2.0 / ((n + 1.3) * (n + 1.3) + mueff);                                               //#learning rate for rank-one update of C
            double cmu   = Math.Min(1.0 - c1, 2.0 * (mueff - 2.0 + 1.0 / mueff) / ((n + 2) * (n + 2) + mueff)); //# and for rank-mu update
            double damps = 1.0 + 2.0 * Math.Max(0, Math.Sqrt((mueff - 1) / (n + 1)) - 1) + cs;                  //# damping for sigma

            //Initialize dynamic (internal) strategy parameters and constants
            //evolution paths for C and sigma
            Matrix <double> pc = Matrix <double> .Build.Dense(n, 1);

            Matrix <double> ps = Matrix <double> .Build.Dense(n, 1);

            Matrix <double> D = Matrix <double> .Build.Dense(n, 1);

            for (int i = 0; i < n; i++)
            {
                pc[i, 0] = 0;
                ps[i, 0] = 0;
                D[i, 0]  = 1.0;
            }
            //Create B Matrix
            Matrix <double> B = Matrix <double> .Build.Dense(n, n);

            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    if (i == j)
                    {
                        B[i, j] = 1.0;
                    }
                    else
                    {
                        B[i, j] = 0.0;
                    }
                }
            }
            //Create C Matrix
            Matrix <double> dSquare = Matrix <double> .Build.Dense(n, 1);

            for (int i = 0; i < n; i++)
            {
                dSquare[i, 0] = D[i, 0] * D[i, 0];
            }
            Matrix <double> C = B * Diagonalize1DMatrix(dSquare) * B.Transpose(); //C = B * self.diag(DSquare) * numpy.transpose(B)
            //Create invertsqrtC Matrix
            Matrix <double> oneOverD = Matrix <double> .Build.Dense(n, 1);

            for (int i = 0; i < n; i++)
            {
                oneOverD[i, 0] = 1.0 / D[i, 0];
            }
            Matrix <double> invsqrtC  = B * Diagonalize1DMatrix(oneOverD) * B.Transpose();
            double          eigeneval = 0; //track update of B and D
            double          chiN      = Math.Pow(n, 0.5) * (1.0 - 1.0 / (4.0 * n) + 1.0 / (21.0 * Math.Pow(n, 2.0)));
            int             counteval = 0;

            //the next 40 lines contain the 20 lines of interesting code
            //CMAESCandidate[] candidateArray = new CMAESCandidate[lambdaVal];
            List <CMAESCandidate> candidateArray = new List <CMAESCandidate>();

            for (int i = 0; i < lambdaVal; i++)
            {
                candidateArray.Add(new CMAESCandidate());
            }

            while (counteval < stopeval)
            {
                Matrix <double> arx = Matrix <double> .Build.Dense(n, lambdaVal);

                //fill in the initial solutions
                for (int i = 0; i < lambdaVal; i++)
                {
                    Matrix <double> randD = Matrix <double> .Build.Dense(n, 1);

                    for (int j = 0; j < n; j++)
                    {
                        randD[j, 0] = D[j, 0] * GenerateRandomNormalVariableForCMAES(randomGenerator, 0, 1.0);
                    }
                    Matrix <double> inputVector      = xMean + sigma * B * randD;
                    double[]        tempWeightVector = new double[inputVector.RowCount];
                    for (int k = 0; k < inputVector.RowCount; k++)
                    {
                        tempWeightVector[k] = inputVector[k, 0];
                    }
                    candidateArray[i] = new CMAESCandidate(tempWeightVector, trainingData, targets, pFunction);
                    counteval         = counteval + 1;
                }
                candidateArray.Sort(); //This maybe problematic, not sure about sorting in C#
                candidateArray.Reverse();
                Matrix <double> xOld = xMean.Clone();
                //Get the new mean value
                Matrix <double> arxSubset = Matrix <double> .Build.Dense(n, (int)mu); //in Maltab this variable would be "arx(:,arindex(1:mu))

                //This replaces line  arxSubset[:, i] = CandidateList[i].InputVector
                for (int i = 0; i < mu; i++)
                {
                    for (int j = 0; j < n; j++)
                    {
                        arxSubset[j, i] = candidateArray[i].GetWeightVector()[j];
                    }
                }
                xMean = arxSubset * weights; //Line 76 Matlab
                //Cumulation: Update evolution paths
                ps = (1 - cs) * ps + Math.Sqrt(cs * (2.0 - cs) * mueff) * invsqrtC * (xMean - xOld) / sigma;
                //Compute ps.^2 equivalent
                double psSquare = 0;
                for (int i = 0; i < ps.RowCount; i++)
                {
                    psSquare = psSquare + ps[i, 0] * ps[i, 0];
                }

                //Compute hsig
                double hSig         = 0.0;
                double term1ForHsig = psSquare / (1.0 - Math.Pow(1.0 - cs, 2.0 * counteval / lambdaVal)) / n;
                double term2ForHsig = 2.0 + 4.0 / (n + 1.0);
                if (term1ForHsig < term2ForHsig)
                {
                    hSig = 1.0;
                }
                //Compute pc, Line 82 Matlab
                pc = (1.0 - cc) * pc + hSig * Math.Sqrt(cc * (2.0 - cc) * mueff) * (xMean - xOld) / sigma;
                //Adapt covariance matrix C
                Matrix <double> repmatMatrix = Tile((int)mu, xOld); //NOT SURE IF THIS IS RIGHT IN C# FIX repmatMatrix = numpy.tile(xold, mu)
                Matrix <double> artmp        = (1.0 / sigma) * (arxSubset - repmatMatrix);
                // C = (1-c1-cmu) * C  + c1 * (pc * pc' + (1-hsig) * cc*(2-cc) * C) + cmu * artmp * diag(weights) * artmp' #This is the original Matlab line for reference
                C = (1.0 - c1 - cmu) * C + c1 * (pc * pc.Transpose() + (1 - hSig) * cc * (2.0 - cc) * C) + cmu * artmp * Diagonalize1DMatrix(weights) * artmp.Transpose();
                //Adapt step size sigma
                //sigma = sigma * Math.Exp((cs / damps) * (numpy.linalg.norm(ps) / chiN - 1))
                sigma = sigma * Math.Exp((cs / damps) * (ps.L2Norm() / chiN - 1)); //NOT SURE IF THIS IS RIGHT FIX IN C#
                //Update B and D from C
                if ((counteval - eigeneval) > (lambdaVal / (c1 + cmu) / n / 10.0))
                {
                    eigeneval = counteval;
                    //C = numpy.triu(C) + numpy.transpose(numpy.triu(C, 1)) #enforce symmetry
                    C = C.UpperTriangle() + C.StrictlyUpperTriangle().Transpose(); //NOT SURE IF THIS IS RIGHT FIX IN C#

                    //eigen decomposition
                    Evd <double> eigen = C.Evd();
                    B = eigen.EigenVectors;
                    Vector <System.Numerics.Complex> vectorEigenValues = eigen.EigenValues;
                    for (int i = 0; i < vectorEigenValues.Count; i++)
                    {
                        D[i, 0] = vectorEigenValues[i].Real;
                    }
                    //take sqrt of D
                    for (int i = 0; i < vectorEigenValues.Count; i++)
                    {
                        D[i, 0] = Math.Sqrt(D[i, 0]);
                    }

                    for (int i = 0; i < n; i++)
                    {
                        oneOverD[i, 0] = 1.0 / D[i, 0];
                    }
                    Matrix <double> middleTerm = Diagonalize1DMatrix(oneOverD); //#Built in Numpy function doesn't create the right size matrix in this case (ex: Numpy gives 1x1 but should be 5x5)
                    invsqrtC = B * middleTerm * B.Transpose();
                }

                globalBestCandidate = candidateArray[0];
                //Termination Conditions
                //bestCandidate = candidateArray[0]; //Array index 0 has the smallest objective function value
                //if (bestCandidate.GetObjectiveFunctionValue() < currentBestValue)
                //{
                //    currentBestValue = bestCandidate.GetObjectiveFunctionValue();
                //    globalBestCandidate = (CMAESCandidate)bestCandidate.Clone();
                //}
                //if (bestCandidate.GetObjectiveFunctionValue() >= stopfitness)
                //{
                //    return globalBestCandidate;
                //}

                //Add in extra termination conditions
                //if (bestCandidate.GetObjectiveFunctionValue() == currentBestValue)
                //{
                //    repeatCount = repeatCount + 1;

                //}
                //else
                //{
                //    repeatCount = 0;
                //}
                ////we have repeated too many times
                //if (repeatCount > 10)
                //{
                //    Console.Out.WriteLine("CMA-ES terminated to due to repeated best.");
                //    return globalBestCandidate;
                //}
                Console.Out.WriteLine("Iteration #" + counteval.ToString());
                //Console.Out.WriteLine("Best Value=" + (1.0 - currentBestValue).ToString());
                Console.Out.WriteLine("Current Value=" + (candidateArray[candidateArray.Count - 1].GetObjectiveFunctionValue()).ToString());
            }//end while loop
            return(globalBestCandidate); //just in case everything terminates
        }
Esempio n. 4
0
        //Use Ha's method to attack XOR APUF with the absolute objective function
        public static void AttackXORAPUFwithAbsoluteMethod()
        {
            //Generate a noisy PUF
            int    bitNum = 64;
            int    pufNum = 2;
            int    numberOfMeasurements = 5; //I am guessing this, no clue
            double aPUFMean             = 0.0;
            double aPUFVar       = 1.0;
            double aPUFMeanNoise = 0.0;
            double aPUFNoiseVar  = aPUFVar / 10.0;

            //Create the XOR APUF
            XORArbiterPUF xPUF = new XORArbiterPUF(pufNum, bitNum, aPUFMean, aPUFVar, aPUFMeanNoise, aPUFNoiseVar);
            //Generate training data (reliability information)
            int             trainingSize    = 30000; //fix back
            int             testingSize     = 10000;
            int             attackRepeatNum = 15;
            ParallelOptions options         = new ParallelOptions {
                MaxDegreeOfParallelism = 10
            };

            //make independent copies in memory
            XORArbiterPUF[] xArray = new XORArbiterPUF[attackRepeatNum];
            for (int i = 0; i < xArray.Length; i++)
            {
                xArray[i] = (XORArbiterPUF)xPUF.Clone();
            }
            double[][] solutionList = new double[attackRepeatNum][];

            //Two different objective functions, one for CMA-ES, the other to test the final model accuracy
            ObjectiveFunctionResponse rObj = new ObjectiveFunctionResponse();

            //ObjectiveFunctionReliabilityStandard[] sObjArray = new ObjectiveFunctionReliabilityStandard[attackRepeatNum];
            ObjectiveFunctionReliabilityAbsolute[] sObjArray = new ObjectiveFunctionReliabilityAbsolute[attackRepeatNum];

            for (int i = 0; i < sObjArray.Length; i++)
            {
                sObjArray[i] = new ObjectiveFunctionReliabilityAbsolute();
            }

            Parallel.For(0, attackRepeatNum, a =>
            {
                //for (int a = 0; a < attackRepeatNum; a++)
                //{
                Random randomGenerator         = new Random((int)DateTime.Now.Ticks); //remove the dependences for parallelization
                int dimensionNumber            = bitNum + 1;
                double[][] trainingData        = new double[trainingSize][];          //these will be phi vectors
                double[][] trainingReliability = new double[trainingSize][];
                //DataGeneration.GenerateReliabilityTrainingDataHaWay(xArray[a], numberOfMeasurements, trainingData, trainingReliability, randomGenerator);
                DataGeneration.GenerateReliabilityTrainingData(xArray[a], numberOfMeasurements, trainingData, trainingReliability, randomGenerator);

                //Generate the first solution randomly for CMA-ES
                double[] firstSolution = new double[bitNum + 1];
                for (int i = 0; i < firstSolution.Length; i++)
                {
                    //firstSolution[i] = AppConstants.rx.NextDouble();
                    firstSolution[i] = randomGenerator.NextDouble();
                }
                Console.Out.WriteLine("Data generation for core " + a.ToString() + " complete. Beginning CMA-ES");
                CMAESCandidate solutionCMAES = CMAESMethods.ComputeCMAES(dimensionNumber, sObjArray[a], trainingData, trainingReliability, firstSolution, randomGenerator);
                double[] solution            = solutionCMAES.GetWeightVector();
                solutionList[a] = solution; //store the solution in independent memory
                                            // }
            });

            //Just see if we can recover the 0th APUF
            //ArbiterPUF aPUF = xPUF.GetAPUFAtIndex(0);
            //Testing data can be in form of response because we don't care about the reliability
            double[][] accMeasures = new double[solutionList.Length][];
            for (int i = 0; i < solutionList.Length; i++)
            {
                accMeasures[i] = new double[pufNum];
            }

            Random randomGenerator2 = new Random((int)DateTime.Now.Ticks);

            for (int j = 0; j < pufNum; j++)
            {
                ArbiterPUF aPUF            = xPUF.GetAPUFAtIndex(j);
                double[][] testingData     = new double[testingSize][]; //these will be phi vectors
                double[][] testingResponse = new double[testingSize][];
                DataGeneration.GenerateTrainingData(aPUF, testingData, testingResponse, randomGenerator2);
                for (int i = 0; i < solutionList.Length; i++)
                {
                    accMeasures[i][j] = 1.0 - rObj.ObjFunValue(solutionList[i], testingData, testingResponse);
                    Console.Out.WriteLine("The accuracy for PUF " + j.ToString() + " " + accMeasures[i][j].ToString());
                }
                //Ground truth sanity check
                double gca = 1.0 - rObj.ObjFunValue(aPUF.GetGroundTruthWeight(), testingData, testingResponse);
                Console.Out.WriteLine("The ground truth accuracy for PUF " + j.ToString() + " " + gca.ToString());
            }
            int k = 0;
        }