Esempio n. 1
0
    // Use this for initialization
    void Start()
    {
        m_device = DeviceDescriptor.UseDefaultDevice();
        print($"Hello from CNTK for {m_device.Type} only!");

        m_allRewards = new List <float>(EpisodeCount);

        m_environment = new DQN.Environment();
        var stateSize  = m_environment.GetStateSize();
        var actionSize = m_environment.GetActionSize();

        m_agent = new Agent(stateSize, actionSize, LayerSize);

        m_currentCoroutine = StartCoroutine(Play(m_agent, m_environment, EpisodeCount, MinEpsillon, true));  //training
    }
Esempio n. 2
0
    IEnumerator Play(Agent agent, DQN.Environment env, int episodeCount = 100, float minEpsillon = 0.05f, bool isTraining = true)
    {
        var actionSize = env.GetActionSize();
        var epsillon   = isTraining ? 1.0f : minEpsillon;

        var rewardQueue = new Queue <float>(100);

        for (int epi = 0; epi < episodeCount; ++epi)
        {
            env.Reset();

            if (isTraining)
            {
                epsillon = Mathf.Max(minEpsillon, 1.0f - (float)Math.Pow((float)epi / episodeCount, 2.0f));
            }

            float episodeReward = 0.0f;
            var   currentState  = Array.ConvertAll <int, float>(env.GetCurrentState(), x => Convert.ToSingle(x));

            List <int> actions = new List <int>(MaxSteps);

            int t = 0;
            for (t = 0; t < MaxSteps; t++)
            {
                //debug!
                if (t == 0 && (epi % 500 == 0))
                {
                    foreach (var q in agent.GetLocalQValues(currentState, m_device))
                    {
                        print("QVAL: " + epi + " " + q);
                    }
                }

                var action = agent.Act(currentState, epsillon, actionSize, m_device, !isTraining);

                actions.Add(action);

                float reward     = 0.0f;
                bool  isFinished = env.Act((DQN.Environment.Actions)action, out reward);

                episodeReward += reward;

                var nextState = Array.ConvertAll <int, float>(env.GetCurrentState(), x => Convert.ToSingle(x));

                if (isTraining)
                {
                    agent.Observe(currentState, (float)action, reward, nextState, isFinished ? 1.0f : 0.0f);
                    agent.Train(BatchSize, Gamma, m_device);
                }

                if (isFinished)
                {
                    break;
                }

                currentState = nextState;
            }

            if (isTraining)
            {
                if (epi > BatchSize)
                {
                    m_allRewards.Add((float)agent.GetTrainingLoss());

                    if (graphScript != null)
                    {
                        graphScript.ShowGraph(m_allRewards);
                    }
                }

                if ((epi + 1) % EpisodesPerTransfer == 0)
                {
                    agent.TransferLearning(m_device);
                }
            }

            rewardQueue.Enqueue((float)episodeReward);
            if ((epi + 1) % PrintInterval == 0)
            {
                float rewardAvg = 0.0f;

                while (rewardQueue.Count > 0)
                {
                    rewardAvg += rewardQueue.Dequeue();
                }

                rewardAvg /= PrintInterval;

                print("Reward: " + (epi + 1) + " " + rewardAvg + " " + isTraining);
                //print("Loss: " + agent.GetTrainingLoss());
            }

            //print("Episode: " + epi);
            yield return(null);
        }

        m_currentCoroutine = null;
        m_coroutineCount++;
    }