Esempio n. 1
0
 Func <Variable, Function> CreateModel(int numOutputDimension, int numLstmLayer, int numHiddenDimension)
 {
     return((input) =>
     {
         Function model = input;
         for (int i = 0; i < numLstmLayer; i++)
         {
             model = Stabilizer.Build(model, device);
             model = LSTM.Build(model, numHiddenDimension, device);
         }
         model = Dense.Build(model, numOutputDimension, device);
         return model;
     });
 }
Esempio n. 2
0
        /// <summary>
        /// This function creates an LSTM block that implements one step of recurrence.
        /// It accepts the previous state and outputs its new state as a two-valued tuple (output, cell state)
        /// </summary>
        /// <typeparam name="TElementType">The data type of the values. May be set to float or double</typeparam>
        /// <param name="input">The input to the LSTM</param>
        /// <param name="prevOutput">The output of the previous step of the LSTM</param>
        /// <param name="prevCellState">The cell state of the previous step of the LSTM</param>
        /// <param name="enableSelfStabilization">If True, then all state-related projection will contain a Stabilizer()</param>
        /// <param name="device">Device used for the computation of this cell</param>
        /// <returns>A function (prev_h, prev_c, input) -> (h, c) that implements one step of a recurrent LSTM layer</returns>
        public static Tuple <Function, Function> LSTMCell <TElementType>(Variable input, Variable prevOutput,
                                                                         Variable prevCellState, bool enableSelfStabilization, DeviceDescriptor device)
        {
            //  TODO: Implements Peephole
            int lstmOutputDimension = prevOutput.Shape[0];
            int lstmCellDimension   = prevCellState.Shape[0];

            bool     isFloatType = typeof(TElementType) == typeof(float);
            DataType dataType    = isFloatType ? DataType.Float : DataType.Double;

            if (enableSelfStabilization)
            {
                prevOutput    = Stabilizer.Build(prevOutput, device, "StabilizedPrevOutput");
                prevCellState = Stabilizer.Build(prevCellState, device, "StabilizedPrevCellState");
            }

            uint      seed = 1;
            Parameter W    = new Parameter((NDShape) new[] { lstmCellDimension * 4, NDShape.InferredDimension }, dataType,
                                           CNTKLib.GlorotUniformInitializer(1.0, 1, 0, seed++), device, "W");
            Parameter b = new Parameter((NDShape) new[] { lstmCellDimension * 4 }, dataType, CNTKLib.GlorotUniformInitializer(1.0, 1, 0, seed++), device, "b");

            Variable linearCombination         = CNTKLib.Times(W, input, "linearCombinationInput");
            Variable linearCombinationPlusBias = CNTKLib.Plus(b, linearCombination, "linearCombinationInputPlusBias");

            Parameter H = new Parameter((NDShape) new[] { lstmCellDimension * 4, lstmOutputDimension }, dataType, CNTKLib.GlorotUniformInitializer(1.0, 1, 0, seed++));
            Variable  linearCombinationPrevOutput = CNTKLib.Times(H, prevOutput, "linearCombinationPreviousOutput");

            Variable gateInput        = CNTKLib.Plus(linearCombinationPlusBias, linearCombinationPrevOutput, "gateInput");
            Variable forgetProjection =
                CNTKLib.Slice(gateInput, new AxisVector()
            {
                new Axis(0)
            }, new IntVector()
            {
                lstmCellDimension * 0
            }, new IntVector()
            {
                lstmCellDimension * 1
            });
            Variable inputProjection =
                CNTKLib.Slice(gateInput, new AxisVector()
            {
                new Axis(0)
            }, new IntVector()
            {
                lstmCellDimension * 1
            }, new IntVector()
            {
                lstmCellDimension * 2
            });
            Variable outputProjection =
                CNTKLib.Slice(gateInput, new AxisVector()
            {
                new Axis(0)
            }, new IntVector()
            {
                lstmCellDimension * 2
            }, new IntVector()
            {
                lstmCellDimension * 3
            });
            Variable candidateProjection =
                CNTKLib.Slice(gateInput, new AxisVector()
            {
                new Axis(0)
            }, new IntVector()
            {
                lstmCellDimension * 3
            }, new IntVector()
            {
                lstmCellDimension * 4
            });

            Function ft  = CNTKLib.Sigmoid(forgetProjection, "ForgetGate");
            Function it  = CNTKLib.Sigmoid(inputProjection, "InputGate");
            Function ot  = CNTKLib.Sigmoid(outputProjection, "OutputGate");
            Function ctt = CNTKLib.Tanh(candidateProjection, "Candidate");

            Function bft = CNTKLib.ElementTimes(prevCellState, ft);
            Function bit = CNTKLib.ElementTimes(it, ctt);
            Function ct  = CNTKLib.Plus(bft, bit, "CellState");

            //  According to the TrainingCSharp example in CNTK repository, h (output) should be stabilized,
            //  however, the Python binding only stabilizes the previous output and previous cell state
            Function h = CNTKLib.ElementTimes(ot, CNTKLib.Tanh(ct), "Output");
            Function c = ct;

            if (lstmOutputDimension != lstmCellDimension)
            {
                Parameter P = new Parameter((NDShape) new[] { lstmOutputDimension, lstmCellDimension }, dataType, CNTKLib.GlorotUniformInitializer(1.0, 1, 0, seed++));
                h = CNTKLib.Times(P, h, "StandarizedOutput");
            }

            return(new Tuple <Function, Function>(h, c));
        }