void create_network() { Console.WriteLine("Compute Device: " + computeDevice.AsString()); imageVariable = Util.inputVariable(new int[] { 28, 28, 1 }, "image_tensor"); categoricalVariable = Util.inputVariable(new int[] { 10 }, "label_tensor"); network = imageVariable; network = Layers.Convolution2D(network, 32, new int[] { 3, 3 }, computeDevice, CC.ReLU); network = CC.Pooling(network, C.PoolingType.Max, new int[] { 2, 2 }, new int[] { 2 }); network = Layers.Convolution2D(network, 64, new int[] { 3, 3 }, computeDevice, CC.ReLU); network = CC.Pooling(network, C.PoolingType.Max, new int[] { 2, 2 }, new int[] { 2 }); network = Layers.Convolution2D(network, 64, new int[] { 3, 3 }, computeDevice, CC.ReLU); network = Layers.Dense(network, 64, computeDevice, activation: CC.ReLU); network = Layers.Dense(network, 10, computeDevice); Logging.detailed_summary(network); Logging.log_number_of_parameters(network); loss_function = CC.CrossEntropyWithSoftmax(network, categoricalVariable); eval_function = CC.ClassificationError(network, categoricalVariable); learner = CC.AdamLearner( new C.ParameterVector(network.Parameters().ToArray()), new C.TrainingParameterScheduleDouble(0.001 * batch_size, (uint)batch_size), new C.TrainingParameterScheduleDouble(0.9), true, new C.TrainingParameterScheduleDouble(0.99)); trainer = CC.CreateTrainer(network, loss_function, eval_function, new C.LearnerVector(new C.Learner[] { learner })); evaluator = CC.CreateEvaluator(eval_function); }
public NDArrayView[] GetParameters() { return(Model.Parameters().Select(parameter => parameter.GetValue()).ToArray()); }