Esempio n. 1
0
        C.Function create_transforming_autoencoder(
            int num_capsules,
            int[] input_shape,
            int[] extra_input_shape,
            int recognizer_dim,
            int generator_dim)
        {
            var capsules_outputs = new List <C.Function>();

            for (int i = 0; i < num_capsules; i++)
            {
                var capsule        = create_capsule($"capsule_{i}", input_shape, extra_input_shape, recognizer_dim, generator_dim);
                var capsule_output = Model.invoke_model(capsule, new C.Variable[] { imageVariable, transformationVariable });
                capsules_outputs.Add(capsule_output);
            }

            var inference = capsules_outputs[0];

            for (int i = 1; i < capsules_outputs.Count; i++)
            {
                inference = CC.Plus(inference, capsules_outputs[i]);
            }
            inference = CC.Sigmoid(inference, "autoencoder_inference");
            return(inference);
        }
Esempio n. 2
0
        C.Function get_length_and_remove_last_dimension(C.Function x, string name)
        {
            var number_dimensions = x.Output.Shape.Dimensions.Count;

            x = CC.Square(x);
            var sum_entries = CC.ReduceSum(x, new C.Axis(number_dimensions - 1));
            var epsilon     = C.Constant.Scalar(C.DataType.Float, 1e-7, computeDevice);

            x = CC.Sqrt(CC.Plus(sum_entries, epsilon));
            x = CC.Squeeze(x);
            return(x);
        }
Esempio n. 3
0
        C.Function squash(C.Function vectors, string name, int axis)
        {
            var squared_values         = CC.Square(vectors);
            var s_squared_sum          = CC.ReduceSum(squared_values, new C.AxisVector(new C.Axis[] { new C.Axis(axis) }), keepDims: true);
            var epsilon                = C.Constant.Scalar(C.DataType.Float, 1e-7, computeDevice);
            var one                    = C.Constant.Scalar(C.DataType.Float, 1.0, computeDevice);
            var normalize_factor       = CC.Plus(CC.Sqrt(s_squared_sum), epsilon);
            var one_plus_s_squared_sum = CC.Plus(s_squared_sum, one);
            var scale                  = CC.ElementDivide(s_squared_sum, one_plus_s_squared_sum);

            scale = CC.ElementDivide(scale, normalize_factor);
            var result = CC.ElementTimes(scale, vectors, name);

            return(result);
        }
Esempio n. 4
0
        C.Function create_capsule_layer(C.Function inputs, int num_capsule, int dim_capsule, int routings, string name)
        {
            var inputs_shape      = inputs.Output.Shape.Dimensions;
            var input_num_capsule = inputs_shape[0];
            var input_dim_capsule = inputs_shape[1];
            var W = new C.Parameter(
                new int[] { num_capsule, dim_capsule, input_num_capsule, input_dim_capsule },
                C.DataType.Float,
                CC.GlorotUniformInitializer(),
                computeDevice,
                name: "W");

            inputs = CC.Reshape(inputs, new int[] { 1, 1, input_num_capsule, input_dim_capsule }); // [1, 1, 1152, 8])
            var inputs_hat = CC.ElementTimes(W, inputs);

            inputs_hat = CC.ReduceSum(inputs_hat, new C.Axis(3));
            inputs_hat = CC.Squeeze(inputs_hat);

            C.Function outputs = null;
            var        zeros   = new C.Constant(new int[] { num_capsule, 1, input_num_capsule }, C.DataType.Float, 0, computeDevice);
            var        b       = CC.Combine(new C.VariableVector()
            {
                zeros
            });

            for (int i = 0; i < routings; i++)
            {
                var c = CC.Softmax(b, new C.Axis(0));
                var batch_dot_result = CC.ElementTimes(c, inputs_hat);
                batch_dot_result = CC.ReduceSum(batch_dot_result, new C.Axis(2));
                batch_dot_result = CC.Squeeze(batch_dot_result);
                outputs          = squash(batch_dot_result, name: $"squashed_{i}", axis: 1);
                if (i < (routings - 1))
                {
                    outputs          = CC.Reshape(outputs, new int[] { num_capsule, dim_capsule, 1 });
                    batch_dot_result = CC.ElementTimes(outputs, inputs_hat);
                    batch_dot_result = CC.ReduceSum(batch_dot_result, new C.Axis(1));
                    b = CC.Plus(b, batch_dot_result);
                }
            }
            outputs = CC.Combine(new C.VariableVector()
            {
                outputs
            }, name);
            return(outputs);
        }
Esempio n. 5
0
        C.Function create_capsule(string name, int[] input_shape, int[] extra_input_shape, int recognizer_dim, int generator_dim)
        {
            var input_dim   = Util.np_prod(input_shape);
            var x           = Util.placeholderVariable(input_shape, "x");
            var extra_input = Util.placeholderVariable(extra_input_shape, "extra_input");

            var x_flat                         = CC.Flatten(x);
            var recognition                    = Layers.Dense(x_flat, recognizer_dim, computeDevice, "recognition_layer", CC.Sigmoid);
            var probability                    = Layers.Dense(recognition, 1, computeDevice, "probability", CC.Sigmoid);
            var learnt_transformation          = Layers.Dense(recognition, 2, computeDevice, "xy_prediction");
            var learnt_transformation_extended = CC.Plus(learnt_transformation, extra_input, "learnt_transformation_extended");

            var generation = Layers.Dense(learnt_transformation_extended, generator_dim, computeDevice, "generator_layer", CC.Sigmoid);
            var out_flat   = Layers.Dense(generation, input_dim, computeDevice, "output");

            out_flat = CC.ElementTimes(out_flat, probability);
            var output = CC.Reshape(out_flat, input_shape);

            return(output);
        }
        private static Function FullyConnectedLinearLayer(Variable input, int outputDim, DataType dataType, DeviceDescriptor device,
                                                          CNTKDictionary weightIntializer, string name = "")
        {
            System.Diagnostics.Debug.Assert(input.Shape.Rank == 1);

            var inputDim = input.Shape[0];

            int[] weightMatrixDimensions = { outputDim, inputDim };
            var   weights = new Parameter(
                weightMatrixDimensions,
                dataType,
                weightIntializer,
                device,
                "weights");
            var timesFunction = CNTKLib.Times(weights, input, "times");

            int[] biasDimension = { outputDim };
            var   bias          = new Parameter(biasDimension, 0.0f, device, "plusParam");

            return(CNTKLib.Plus(bias, timesFunction, name));
        }
Esempio n. 7
0
 public Tensor Add(Tensor a, Tensor b)
 {
     return(Out(C.Plus(In(a), In(b))));
 }
Esempio n. 8
0
 public Tensor Add(Tensor a, float b)
 {
     return(Out(C.Plus(In(a), In(b, a.Shape))));
 }
 /// <summary>
 /// plus operator of 2 Variables
 /// </summary>
 /// <param name="v1"></param>
 /// <param name="v2"></param>
 /// <returns></returns>
 public static Function operator +(Variable v1, Variable v2)
 {
     return(CNTKLib.Plus(v1, v2));
 }
Esempio n. 10
0
        void create_network()
        {
            imageVariable = Util.inputVariable(input_shape, "image");
            var conv1 = Layers.Convolution2D(
                imageVariable, 256, new int[] { 9, 9 }, computeDevice,
                use_padding: false, activation: CC.ReLU, name: "conv1");

            var primarycaps = create_primary_cap(
                conv1, dim_capsule: 8, n_channels: 32,
                kernel_size: new int[] { 9, 9 }, strides: new int[] { 2, 2 }, pad: false);

            var digitcaps = create_capsule_layer(
                primarycaps, num_capsule: 10, dim_capsule: 16,
                routings: routings, name: "digitcaps");

            var out_caps = get_length_and_remove_last_dimension(digitcaps, name: "capsnet");

            categoricalLabel = Util.inputVariable(new int[] { 10 }, "label");
            var masked_by_y = get_mask_and_infer_from_last_dimension(digitcaps, CC.Combine(new C.VariableVector()
            {
                categoricalLabel
            }));
            var masked = get_mask_and_infer_from_last_dimension(digitcaps, null);

            var decoder = create_decoder(masked.Output.Shape.Dimensions.ToArray());
            var decoder_output_training   = Model.invoke_model(decoder, new C.Variable[] { masked_by_y });
            var decoder_output_evaluation = Model.invoke_model(decoder, new C.Variable[] { masked });

            network = CC.Combine(new C.VariableVector()
            {
                out_caps, decoder_output_training
            }, "overall_training_network");
            Logging.log_number_of_parameters(network);

            // first component of the loss
            var y_true     = categoricalLabel;
            var y_pred     = out_caps;
            var digit_loss = CC.Plus(
                CC.ElementTimes(y_true, CC.Square(CC.ElementMax(DC(0), CC.Minus(DC(0.9), y_pred), ""))),
                CC.ElementTimes(DC(0.5),
                                CC.ElementTimes(CC.Minus(DC(1), y_true), CC.Square(CC.ElementMax(DC(0), CC.Minus(y_pred, DC(0.1)), "")))));

            digit_loss = CC.ReduceSum(digit_loss, C.Axis.AllStaticAxes());

            // second component of the loss
            var num_pixels_at_output = Util.np_prod(decoder_output_training.Output.Shape.Dimensions.ToArray());
            var squared_error        = CC.SquaredError(decoder_output_training, imageVariable);
            var image_mse            = CC.ElementDivide(squared_error, DC(num_pixels_at_output));

            loss_function = CC.Plus(digit_loss, CC.ElementTimes(DC(0.35), image_mse));
            eval_function = CC.ClassificationError(y_pred, y_true);

            learner = CC.AdamLearner(
                new C.ParameterVector(network.Parameters().ToArray()),
                new C.TrainingParameterScheduleDouble(0.001 * batch_size, (uint)batch_size),
                new C.TrainingParameterScheduleDouble(0.9),
                true,
                new C.TrainingParameterScheduleDouble(0.99));

            trainer   = CC.CreateTrainer(network, loss_function, eval_function, new C.LearnerVector(new C.Learner[] { learner }));
            evaluator = CC.CreateEvaluator(eval_function);
        }