sqrt() public method

public sqrt ( ) : BigInteger
return BigInteger
Esempio n. 1
0
    //***********************************************************************
    // Tests the correct implementation of sqrt() method.
    //***********************************************************************

    public static void SqrtTest(int rounds)
    {
      Random rand = new Random();
      for (int count = 0; count < rounds; count++) {
        // generate data of random length
        int t1 = 0;
        while (t1 == 0)
          t1 = (int) (rand.NextDouble() * 1024);

        Console.Write("Round = " + count);

        BigInteger a = new BigInteger();
        a.genRandomBits(t1, rand);

        BigInteger b = a.sqrt();
        BigInteger c = (b + 1) * (b + 1);

        // check that b is the largest integer such that b*b <= a
        if (c <= a) {
          Console.Error.WriteLine("\nError at round " + count);
          Console.Error.WriteLine(a + "\n");
          return;
        }
        Console.Error.WriteLine(" <PASSED>.");
      }
    }
Esempio n. 2
0
    private bool LucasStrongTestHelper(BigInteger thisVal)
    {
      // Do the test (selects D based on Selfridge)
      // Let D be the first element of the sequence
      // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
      // Let P = 1, Q = (1-D) / 4

      long D = 5, sign = -1, dCount = 0;
      bool done = false;

      while (!done) {
        int Jresult = BigInteger.Jacobi(D, thisVal);

        if (Jresult == -1)
          done = true;  // J(D, this) = 1
        else {
          if (Jresult == 0 && Math.Abs(D) < thisVal)    // divisor found
            return false;

          if (dCount == 20) {
            // check for square
            BigInteger root = thisVal.sqrt();
            if (root * root == thisVal)
              return false;
          }

          //Console.Error.WriteLine(D);
          D = (Math.Abs(D) + 2) * sign;
          sign = -sign;
        }
        dCount++;
      }

      long Q = (1 - D) >> 2;

      /*
       * Console.Error.WriteLine("D = " + D);
       * Console.Error.WriteLine("Q = " + Q);
       * Console.Error.WriteLine("(n,D) = " + thisVal.gcd(D));
       * Console.Error.WriteLine("(n,Q) = " + thisVal.gcd(Q));
       * Console.Error.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
       */

      BigInteger p_add1 = thisVal + 1;
      int s = 0;

      for (int index = 0; index < p_add1.dataLength; index++) {
        uint mask = 0x01;

        for (int i = 0; i < 32; i++) {
          if ((p_add1.data[index] & mask) != 0) {
            index = p_add1.dataLength;  // to break the outer loop
            break;
          }
          mask <<= 1;
          s++;
        }
      }

      BigInteger t = p_add1 >> s;

      // calculate constant = b^(2k) / m
      // for Barrett Reduction
      BigInteger constant = new BigInteger();

      int nLen = thisVal.dataLength << 1;
      constant.data[nLen] = 0x00000001;
      constant.dataLength = nLen + 1;

      constant = constant / thisVal;

      BigInteger[] lucas =
        LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
      bool isPrime = false;

      if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
          (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) {
        // u(t) = 0 or V(t) = 0
        isPrime = true;
      }

      for (int i = 1; i < s; i++) {
        if (!isPrime) {
          // doubling of index
          lucas[1] =
            thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal,
                                     constant);
          lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

          //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

          if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
            isPrime = true;
        }

        lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);    //Q^k
      }


      if (isPrime) // additional checks for composite numbers
      {
        // If n is prime and gcd(n, Q) == 1, then
        // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

        BigInteger g = thisVal.gcd(Q);
        if (g.dataLength == 1 && g.data[0] == 1)        // gcd(this, Q) == 1
        {
          if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
            lucas[2] += thisVal;

          BigInteger temp =
            (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
          if ((temp.data[maxLength - 1] & 0x80000000) != 0)
            temp += thisVal;

          if (lucas[2] != temp)
            isPrime = false;
        }
      }

      return isPrime;
    }