public bool SolvePositionConstraints(float baumgarte)
        {
            float minSeparation = 0.0f;

            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = _constraints[i];

                Body bodyA = c.bodyA;
                Body bodyB = c.bodyB;

                float invMassA = bodyA._mass * bodyA._invMass;
                float invIA = bodyA._mass * bodyA._invI;
                float invMassB = bodyB._mass * bodyB._invMass;
                float invIB = bodyB._mass * bodyB._invI;

                // Solve normal constraints
                for (int j = 0; j < c.pointCount; ++j)
                {
                    PositionSolverManifold psm = new PositionSolverManifold(ref c, j);
                    Vector2 normal = psm._normal;

                    Vector2 point = psm._point;
                    float separation = psm._separation;

                    Vector2 rA = point - bodyA._sweep.c;
                    Vector2 rB = point - bodyB._sweep.c;

                    // Track max constraint error.
                    minSeparation = Math.Min(minSeparation, separation);

                    // Prevent large corrections and allow slop.
                    float C = MathUtils.Clamp(baumgarte * (separation + Settings.b2_linearSlop), -Settings.b2_maxLinearCorrection, 0.0f);

                    // Compute the effective mass.
                    float rnA = MathUtils.Cross(rA, normal);
                    float rnB = MathUtils.Cross(rB, normal);
                    float K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;

                    // Compute normal impulse
                    float impulse = K > 0.0f ? -C / K : 0.0f;

            #if MATH_OVERLOADS
                    Vector2 P = impulse * normal;

                    bodyA._sweep.c -= invMassA * P;
                    bodyA._sweep.a -= invIA * MathUtils.Cross(rA, P);

                    bodyB._sweep.c += invMassB * P;
                    bodyB._sweep.a += invIB * MathUtils.Cross(rB, P);
            #else
                    Vector2 P = new Vector2(impulse * normal.X, impulse * normal.Y);

                    bodyA._sweep.c.X -= invMassA * P.X;
                    bodyA._sweep.c.Y -= invMassA * P.Y;
                    bodyA._sweep.a -= invIA * (rA.X * P.Y - rA.Y * P.X);

                    bodyB._sweep.c.X += invMassB * P.X;
                    bodyB._sweep.c.Y += invMassB * P.Y;
                    bodyB._sweep.a += invIB * (rB.X * P.Y - rB.Y * P.X);
            #endif
                    bodyA.SynchronizeTransform();
                    bodyB.SynchronizeTransform();
                }
            }

            // We can't expect minSpeparation >= -Settings.b2_linearSlop because we don't
            // push the separation above -Settings.b2_linearSlop.
            return minSeparation >= -1.5f * Settings.b2_linearSlop;
        }
        public bool SolvePositionConstraints(float baumgarte)
        {
            float minSeparation = 0.0f;

            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = _constraints[i];

                Body bodyA = c.bodyA;
                Body bodyB = c.bodyB;

                float invMassA = bodyA._mass * bodyA._invMass;
                float invIA    = bodyA._mass * bodyA._invI;
                float invMassB = bodyB._mass * bodyB._invMass;
                float invIB    = bodyB._mass * bodyB._invI;

                // Solve normal constraints
                for (int j = 0; j < c.pointCount; ++j)
                {
                    PositionSolverManifold psm = new PositionSolverManifold(ref c, j);
                    Vector2 normal             = psm._normal;

                    Vector2 point      = psm._point;
                    float   separation = psm._separation;

                    Vector2 rA = point - bodyA._sweep.c;
                    Vector2 rB = point - bodyB._sweep.c;

                    // Track max constraint error.
                    minSeparation = Math.Min(minSeparation, separation);

                    // Prevent large corrections and allow slop.
                    float C = MathUtils.Clamp(baumgarte * (separation + Settings.b2_linearSlop), -Settings.b2_maxLinearCorrection, 0.0f);

                    // Compute the effective mass.
                    float rnA = MathUtils.Cross(rA, normal);
                    float rnB = MathUtils.Cross(rB, normal);
                    float K   = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;

                    // Compute normal impulse
                    float impulse = K > 0.0f ? -C / K : 0.0f;

#if MATH_OVERLOADS
                    Vector2 P = impulse * normal;

                    bodyA._sweep.c -= invMassA * P;
                    bodyA._sweep.a -= invIA * MathUtils.Cross(rA, P);

                    bodyB._sweep.c += invMassB * P;
                    bodyB._sweep.a += invIB * MathUtils.Cross(rB, P);
#else
                    Vector2 P = new Vector2(impulse * normal.X, impulse * normal.Y);

                    bodyA._sweep.c.X -= invMassA * P.X;
                    bodyA._sweep.c.Y -= invMassA * P.Y;
                    bodyA._sweep.a   -= invIA * (rA.X * P.Y - rA.Y * P.X);

                    bodyB._sweep.c.X += invMassB * P.X;
                    bodyB._sweep.c.Y += invMassB * P.Y;
                    bodyB._sweep.a   += invIB * (rB.X * P.Y - rB.Y * P.X);
#endif
                    bodyA.SynchronizeTransform();
                    bodyB.SynchronizeTransform();
                }
            }

            // We can't expect minSpeparation >= -Settings.b2_linearSlop because we don't
            // push the separation above -Settings.b2_linearSlop.
            return(minSeparation >= -1.5f * Settings.b2_linearSlop);
        }