Encapsulates buffer of image samples for one color component When provided with funny indices (see jpeg_d_main_controller for explanation of what it is) uses them for non-linear row access.
Esempio n. 1
0
        /// <summary>
        /// Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
        /// It's still a box filter.
        /// </summary>
        private void h2v2_upsample(ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            int inrow  = 0;
            int outrow = 0;

            while (outrow < m_cinfo.m_max_v_samp_factor)
            {
                int row      = m_upsampleRowOffset + inrow;
                int outIndex = 0;

                for (int col = 0; outIndex < m_cinfo.m_output_width; col++)
                {
                    byte invalue = input_data[row][col]; /* don't need GETJSAMPLE() here */
                    output_data[outrow][outIndex] = invalue;
                    outIndex++;
                    output_data[outrow][outIndex] = invalue;
                    outIndex++;
                }

                JpegUtils.jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1, m_cinfo.m_output_width);
                inrow++;
                outrow += 2;
            }
        }
Esempio n. 2
0
        /// <summary>
        /// This version handles any integral sampling ratios.
        /// This is not used for typical JPEG files, so it need not be fast.
        /// Nor, for that matter, is it particularly accurate: the algorithm is
        /// simple replication of the input pixel onto the corresponding output
        /// pixels.  The hi-falutin sampling literature refers to this as a
        /// "box filter".  A box filter tends to introduce visible artifacts,
        /// so if you are actually going to use 3:1 or 4:1 sampling ratios
        /// you would be well advised to improve this code.
        /// </summary>
        private void int_upsample(ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];
            int             h_expand    = m_h_expand[m_currentComponent];
            int             v_expand    = m_v_expand[m_currentComponent];

            int inrow  = 0;
            int outrow = 0;

            while (outrow < m_cinfo.m_max_v_samp_factor)
            {
                /* Generate one output row with proper horizontal expansion */
                int row = m_upsampleRowOffset + inrow;
                for (int col = 0; col < m_cinfo.m_output_width; col++)
                {
                    byte invalue  = input_data[row][col]; /* don't need GETJSAMPLE() here */
                    int  outIndex = 0;
                    for (int h = h_expand; h > 0; h--)
                    {
                        output_data[outrow][outIndex] = invalue;
                        outIndex++;
                    }
                }

                /* Generate any additional output rows by duplicating the first one */
                if (v_expand > 1)
                {
                    JpegUtils.jcopy_sample_rows(output_data, outrow, output_data,
                                                outrow + 1, v_expand - 1, m_cinfo.m_output_width);
                }

                inrow++;
                outrow += v_expand;
            }
        }
Esempio n. 3
0
 /// <summary>
 /// Copy some rows of samples from one place to another.
 /// num_rows rows are copied from input_array[source_row++]
 /// to output_array[dest_row++]; these areas may overlap for duplication.
 /// The source and destination arrays must be at least as wide as num_cols.
 /// </summary>
 public static void jcopy_sample_rows(ComponentBuffer input_array, int source_row, byte[][] output_array, int dest_row, int num_rows, int num_cols)
 {
     for (int row = 0; row < num_rows; row++)
     {
         Buffer.BlockCopy(input_array[source_row + row], 0, output_array[dest_row + row], 0, num_cols);
     }
 }
Esempio n. 4
0
#pragma warning disable IDE1006 // Naming Styles
        public static void jcopy_sample_rows(ComponentBuffer input_array, int source_row, ComponentBuffer output_array, int dest_row, int num_rows, int num_cols)
#pragma warning restore IDE1006 // Naming Styles
        {
            for (var row = 0; row < num_rows; row++)
            {
                Buffer.BlockCopy(input_array[source_row + row], 0, output_array[dest_row + row], 0, num_cols);
            }
        }
Esempio n. 5
0
        /// <summary>
        /// Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
        /// It's still a box filter.
        /// </summary>
        private void h2v1_upsample(ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            for (int inrow = 0; inrow < m_cinfo.m_max_v_samp_factor; inrow++)
            {
                int row      = m_upsampleRowOffset + inrow;
                int outIndex = 0;

                for (int col = 0; outIndex < m_cinfo.m_output_width; col++)
                {
                    byte invalue = input_data[row][col]; /* don't need GETJSAMPLE() here */
                    output_data[inrow][outIndex] = invalue;
                    outIndex++;
                    output_data[inrow][outIndex] = invalue;
                    outIndex++;
                }
            }
        }
Esempio n. 6
0
        /// <summary>
        /// Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
        ///
        /// The upsampling algorithm is linear interpolation between pixel centers,
        /// also known as a "triangle filter".  This is a good compromise between
        /// speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
        /// of the way between input pixel centers.
        ///
        /// A note about the "bias" calculations: when rounding fractional values to
        /// integer, we do not want to always round 0.5 up to the next integer.
        /// If we did that, we'd introduce a noticeable bias towards larger values.
        /// Instead, this code is arranged so that 0.5 will be rounded up or down at
        /// alternate pixel locations (a simple ordered dither pattern).
        /// </summary>
        private void h2v1_fancy_upsample(int downsampled_width, ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            for (int inrow = 0; inrow < m_cinfo.m_max_v_samp_factor; inrow++)
            {
                int row     = m_upsampleRowOffset + inrow;
                int inIndex = 0;

                int outIndex = 0;

                /* Special case for first column */
                int invalue = input_data[row][inIndex];
                inIndex++;

                output_data[inrow][outIndex] = (byte)invalue;
                outIndex++;
                output_data[inrow][outIndex] = (byte)((invalue * 3 + (int)input_data[row][inIndex] + 2) >> 2);
                outIndex++;

                for (int colctr = downsampled_width - 2; colctr > 0; colctr--)
                {
                    /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
                    invalue = (int)input_data[row][inIndex] * 3;
                    inIndex++;

                    output_data[inrow][outIndex] = (byte)((invalue + (int)input_data[row][inIndex - 2] + 1) >> 2);
                    outIndex++;

                    output_data[inrow][outIndex] = (byte)((invalue + (int)input_data[row][inIndex] + 2) >> 2);
                    outIndex++;
                }

                /* Special case for last column */
                invalue = input_data[row][inIndex];
                output_data[inrow][outIndex] = (byte)((invalue * 3 + (int)input_data[row][inIndex - 1] + 1) >> 2);
                outIndex++;
                output_data[inrow][outIndex] = (byte)invalue;
                outIndex++;
            }
        }
        /// <summary>
        /// Process some data.
        /// This handles the simple case where no context is required.
        /// </summary>
        private void process_data_simple_main(byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
        {
            ComponentBuffer[] cb = new ComponentBuffer[JpegConstants.MAX_COMPONENTS];
            for (int i = 0; i < JpegConstants.MAX_COMPONENTS; i++)
            {
                cb[i] = new ComponentBuffer();
                cb[i].SetBuffer(m_buffer[i], null, 0);
            }

            /* Read input data if we haven't filled the main buffer yet */
            if (!m_buffer_full)
            {
                if (m_cinfo.m_coef.decompress_data(cb) == ReadResult.JPEG_SUSPENDED)
                {
                    /* suspension forced, can do nothing more */
                    return;
                }

                /* OK, we have an iMCU row to work with */
                m_buffer_full = true;
            }

            /* There are always min_DCT_scaled_size row groups in an iMCU row. */
            int rowgroups_avail = m_cinfo.m_min_DCT_scaled_size;

            /* Note: at the bottom of the image, we may pass extra garbage row groups
             * to the postprocessor.  The postprocessor has to check for bottom
             * of image anyway (at row resolution), so no point in us doing it too.
             */

            /* Feed the postprocessor */
            m_cinfo.m_post.post_process_data(cb, ref m_rowgroup_ctr, rowgroups_avail, output_buf, ref out_row_ctr, out_rows_avail);

            /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
            if (m_rowgroup_ctr >= rowgroups_avail)
            {
                m_buffer_full  = false;
                m_rowgroup_ctr = 0;
            }
        }
Esempio n. 8
0
        private void upsampleComponent(ref ComponentBuffer input_data)
        {
            switch (m_upsampleMethods[m_currentComponent])
            {
            case ComponentUpsampler.noop_upsampler:
                noop_upsample();
                break;

            case ComponentUpsampler.fullsize_upsampler:
                fullsize_upsample(ref input_data);
                break;

            case ComponentUpsampler.h2v1_fancy_upsampler:
                h2v1_fancy_upsample(m_cinfo.Comp_info[m_currentComponent].downsampled_width, ref input_data);
                break;

            case ComponentUpsampler.h2v1_upsampler:
                h2v1_upsample(ref input_data);
                break;

            case ComponentUpsampler.h2v2_fancy_upsampler:
                h2v2_fancy_upsample(m_cinfo.Comp_info[m_currentComponent].downsampled_width, ref input_data);
                break;

            case ComponentUpsampler.h2v2_upsampler:
                h2v2_upsample(ref input_data);
                break;

            case ComponentUpsampler.int_upsampler:
                int_upsample(ref input_data);
                break;

            default:
                m_cinfo.ERREXIT(J_MESSAGE_CODE.JERR_NOTIMPL);
                break;
            }
        }
Esempio n. 9
0
        /// <summary>
        /// Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
        /// Again a triangle filter; see comments for h2v1 case, above.
        /// 
        /// It is OK for us to reference the adjacent input rows because we demanded
        /// context from the main buffer controller (see initialization code).
        /// </summary>
        private void h2v2_fancy_upsample(int downsampled_width, ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            int inrow = m_upsampleRowOffset;
            int outrow = 0;
            while (outrow < m_cinfo.m_max_v_samp_factor)
            {
                for (int v = 0; v < 2; v++)
                {
                    // nearest input row index
                    int inIndex0 = 0;

                    //next nearest input row index
                    int inIndex1 = 0;
                    int inRow1 = -1;
                    if (v == 0)
                    {
                        /* next nearest is row above */
                        inRow1 = inrow - 1;
                    }
                    else
                    {
                        /* next nearest is row below */
                        inRow1 = inrow + 1;
                    }

                    int row = outrow;
                    int outIndex = 0;
                    outrow++;

                    /* Special case for first column */
                    int thiscolsum = (int)input_data[inrow][inIndex0] * 3 + (int)input_data[inRow1][inIndex1];
                    inIndex0++;
                    inIndex1++;

                    int nextcolsum = (int)input_data[inrow][inIndex0] * 3 + (int)input_data[inRow1][inIndex1];
                    inIndex0++;
                    inIndex1++;

                    output_data[row][outIndex] = (byte)((thiscolsum * 4 + 8) >> 4);
                    outIndex++;

                    output_data[row][outIndex] = (byte)((thiscolsum * 3 + nextcolsum + 7) >> 4);
                    outIndex++;

                    int lastcolsum = thiscolsum;
                    thiscolsum = nextcolsum;

                    for (int colctr = downsampled_width - 2; colctr > 0; colctr--)
                    {
                        /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
                        /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
                        nextcolsum = (int)input_data[inrow][inIndex0] * 3 + (int)input_data[inRow1][inIndex1];
                        inIndex0++;
                        inIndex1++;

                        output_data[row][outIndex] = (byte)((thiscolsum * 3 + lastcolsum + 8) >> 4);
                        outIndex++;

                        output_data[row][outIndex] = (byte)((thiscolsum * 3 + nextcolsum + 7) >> 4);
                        outIndex++;

                        lastcolsum = thiscolsum;
                        thiscolsum = nextcolsum;
                    }

                    /* Special case for last column */
                    output_data[row][outIndex] = (byte)((thiscolsum * 3 + lastcolsum + 8) >> 4);
                    outIndex++;
                    output_data[row][outIndex] = (byte)((thiscolsum * 4 + 7) >> 4);
                    outIndex++;
                }

                inrow++;
            }
        }
Esempio n. 10
0
 private void upsampleComponent(ref ComponentBuffer input_data)
 {
     switch (m_upsampleMethods[m_currentComponent])
     {
         case ComponentUpsampler.noop_upsampler:
             noop_upsample();
             break;
         case ComponentUpsampler.fullsize_upsampler:
             fullsize_upsample(ref input_data);
             break;
         case ComponentUpsampler.h2v1_fancy_upsampler:
             h2v1_fancy_upsample(m_cinfo.Comp_info[m_currentComponent].downsampled_width, ref input_data);
             break;
         case ComponentUpsampler.h2v1_upsampler:
             h2v1_upsample(ref input_data);
             break;
         case ComponentUpsampler.h2v2_fancy_upsampler:
             h2v2_fancy_upsample(m_cinfo.Comp_info[m_currentComponent].downsampled_width, ref input_data);
             break;
         case ComponentUpsampler.h2v2_upsampler:
             h2v2_upsample(ref input_data);
             break;
         case ComponentUpsampler.int_upsampler:
             int_upsample(ref input_data);
             break;
         default:
             m_cinfo.ERREXIT(J_MESSAGE_CODE.JERR_NOTIMPL);
             break;
     }
 }
Esempio n. 11
0
        /// <summary>
        /// Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
        /// 
        /// The upsampling algorithm is linear interpolation between pixel centers,
        /// also known as a "triangle filter".  This is a good compromise between
        /// speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
        /// of the way between input pixel centers.
        /// 
        /// A note about the "bias" calculations: when rounding fractional values to
        /// integer, we do not want to always round 0.5 up to the next integer.
        /// If we did that, we'd introduce a noticeable bias towards larger values.
        /// Instead, this code is arranged so that 0.5 will be rounded up or down at
        /// alternate pixel locations (a simple ordered dither pattern).
        /// </summary>
        private void h2v1_fancy_upsample(int downsampled_width, ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            for (int inrow = 0; inrow < m_cinfo.m_max_v_samp_factor; inrow++)
            {
                int row = m_upsampleRowOffset + inrow;
                int inIndex = 0;

                int outIndex = 0;

                /* Special case for first column */
                int invalue = input_data[row][inIndex];
                inIndex++;

                output_data[inrow][outIndex] = (byte)invalue;
                outIndex++;
                output_data[inrow][outIndex] = (byte)((invalue * 3 + (int)input_data[row][inIndex] + 2) >> 2);
                outIndex++;

                for (int colctr = downsampled_width - 2; colctr > 0; colctr--)
                {
                    /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
                    invalue = (int)input_data[row][inIndex] * 3;
                    inIndex++;

                    output_data[inrow][outIndex] = (byte)((invalue + (int)input_data[row][inIndex - 2] + 1) >> 2);
                    outIndex++;

                    output_data[inrow][outIndex] = (byte)((invalue + (int)input_data[row][inIndex] + 2) >> 2);
                    outIndex++;
                }

                /* Special case for last column */
                invalue = input_data[row][inIndex];
                output_data[inrow][outIndex] = (byte)((invalue * 3 + (int)input_data[row][inIndex - 1] + 1) >> 2);
                outIndex++;
                output_data[inrow][outIndex] = (byte)invalue;
                outIndex++;
            }
        }
Esempio n. 12
0
        /// <summary>
        /// Decompress and return some data in the multi-pass case.
        /// Always attempts to emit one fully interleaved MCU row ("iMCU" row).
        /// Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
        /// 
        /// NB: output_buf contains a plane for each component in image.
        /// </summary>
        private ReadResult decompress_data_ordinary(ComponentBuffer[] output_buf)
        {
            /* Force some input to be done if we are getting ahead of the input. */
            while (m_cinfo.m_input_scan_number < m_cinfo.m_output_scan_number ||
                   (m_cinfo.m_input_scan_number == m_cinfo.m_output_scan_number &&
                    m_cinfo.m_input_iMCU_row <= m_cinfo.m_output_iMCU_row))
            {
                if (m_cinfo.m_inputctl.consume_input() == ReadResult.JPEG_SUSPENDED)
                    return ReadResult.JPEG_SUSPENDED;
            }

            int last_iMCU_row = m_cinfo.m_total_iMCU_rows - 1;

            /* OK, output from the virtual arrays. */
            for (int ci = 0; ci < m_cinfo.m_num_components; ci++)
            {
                jpeg_component_info componentInfo = m_cinfo.Comp_info[ci];

                /* Don't bother to IDCT an uninteresting component. */
                if (!componentInfo.component_needed)
                    continue;

                /* Align the virtual buffer for this component. */
                JBLOCK[][] buffer = m_whole_image[ci].Access(m_cinfo.m_output_iMCU_row * componentInfo.V_samp_factor,
                    componentInfo.V_samp_factor);

                /* Count non-dummy DCT block rows in this iMCU row. */
                int block_rows;
                if (m_cinfo.m_output_iMCU_row < last_iMCU_row)
                    block_rows = componentInfo.V_samp_factor;
                else
                {
                    /* NB: can't use last_row_height here; it is input-side-dependent! */
                    block_rows = componentInfo.height_in_blocks % componentInfo.V_samp_factor;
                    if (block_rows == 0)
                        block_rows = componentInfo.V_samp_factor;
                }

                /* Loop over all DCT blocks to be processed. */
                int rowIndex = 0;
                for (int block_row = 0; block_row < block_rows; block_row++)
                {
                    int output_col = 0;
                    for (int block_num = 0; block_num < componentInfo.Width_in_blocks; block_num++)
                    {
                        m_cinfo.m_idct.inverse(componentInfo.Component_index,
                            buffer[block_row][block_num].data, output_buf[ci], rowIndex, output_col);

                        output_col += componentInfo.DCT_scaled_size;
                    }

                    rowIndex += componentInfo.DCT_scaled_size;
                }
            }

            m_cinfo.m_output_iMCU_row++;
            if (m_cinfo.m_output_iMCU_row < m_cinfo.m_total_iMCU_rows)
                return ReadResult.JPEG_ROW_COMPLETED;

            return ReadResult.JPEG_SCAN_COMPLETED;
        }
Esempio n. 13
0
        /// <summary>
        /// Variant of decompress_data for use when doing block smoothing.
        /// </summary>
        private ReadResult decompress_smooth_data(ComponentBuffer[] output_buf)
        {
            /* Force some input to be done if we are getting ahead of the input. */
            while (m_cinfo.m_input_scan_number <= m_cinfo.m_output_scan_number && !m_cinfo.m_inputctl.EOIReached())
            {
                if (m_cinfo.m_input_scan_number == m_cinfo.m_output_scan_number)
                {
                    /* If input is working on current scan, we ordinarily want it to
                     * have completed the current row.  But if input scan is DC,
                     * we want it to keep one row ahead so that next block row's DC
                     * values are up to date.
                     */
                    int delta = (m_cinfo.m_Ss == 0) ? 1 : 0;
                    if (m_cinfo.m_input_iMCU_row > m_cinfo.m_output_iMCU_row + delta)
                        break;
                }

                if (m_cinfo.m_inputctl.consume_input() == ReadResult.JPEG_SUSPENDED)
                    return ReadResult.JPEG_SUSPENDED;
            }

            int last_iMCU_row = m_cinfo.m_total_iMCU_rows - 1;

            /* OK, output from the virtual arrays. */
            for (int ci = 0; ci < m_cinfo.m_num_components; ci++)
            {
                jpeg_component_info componentInfo = m_cinfo.Comp_info[ci];

                /* Don't bother to IDCT an uninteresting component. */
                if (!componentInfo.component_needed)
                    continue;

                int block_rows;
                int access_rows;
                bool last_row;
                /* Count non-dummy DCT block rows in this iMCU row. */
                if (m_cinfo.m_output_iMCU_row < last_iMCU_row)
                {
                    block_rows = componentInfo.V_samp_factor;
                    access_rows = block_rows * 2; /* this and next iMCU row */
                    last_row = false;
                }
                else
                {
                    /* NB: can't use last_row_height here; it is input-side-dependent! */
                    block_rows = componentInfo.height_in_blocks % componentInfo.V_samp_factor;
                    if (block_rows == 0)
                        block_rows = componentInfo.V_samp_factor;
                    access_rows = block_rows; /* this iMCU row only */
                    last_row = true;
                }

                /* Align the virtual buffer for this component. */
                JBLOCK[][] buffer = null;
                bool first_row;
                int bufferRowOffset = 0;
                if (m_cinfo.m_output_iMCU_row > 0)
                {
                    access_rows += componentInfo.V_samp_factor; /* prior iMCU row too */
                    buffer = m_whole_image[ci].Access((m_cinfo.m_output_iMCU_row - 1) * componentInfo.V_samp_factor, access_rows);
                    bufferRowOffset = componentInfo.V_samp_factor; /* point to current iMCU row */
                    first_row = false;
                }
                else
                {
                    buffer = m_whole_image[ci].Access(0, access_rows);
                    first_row = true;
                }

                /* Fetch component-dependent info */
                int coefBitsOffset = ci * SAVED_COEFS;
                int Q00 = componentInfo.quant_table.quantval[0];
                int Q01 = componentInfo.quant_table.quantval[Q01_POS];
                int Q10 = componentInfo.quant_table.quantval[Q10_POS];
                int Q20 = componentInfo.quant_table.quantval[Q20_POS];
                int Q11 = componentInfo.quant_table.quantval[Q11_POS];
                int Q02 = componentInfo.quant_table.quantval[Q02_POS];
                int outputIndex = ci;

                /* Loop over all DCT blocks to be processed. */
                for (int block_row = 0; block_row < block_rows; block_row++)
                {
                    int bufferIndex = bufferRowOffset + block_row;

                    int prev_block_row = 0;
                    if (first_row && block_row == 0)
                        prev_block_row = bufferIndex;
                    else
                        prev_block_row = bufferIndex - 1;

                    int next_block_row = 0;
                    if (last_row && block_row == block_rows - 1)
                        next_block_row = bufferIndex;
                    else
                        next_block_row = bufferIndex + 1;

                    /* We fetch the surrounding DC values using a sliding-register approach.
                     * Initialize all nine here so as to do the right thing on narrow pics.
                     */
                    int DC1 = buffer[prev_block_row][0][0];
                    int DC2 = DC1;
                    int DC3 = DC1;

                    int DC4 = buffer[bufferIndex][0][0];
                    int DC5 = DC4;
                    int DC6 = DC4;

                    int DC7 = buffer[next_block_row][0][0];
                    int DC8 = DC7;
                    int DC9 = DC7;

                    int output_col = 0;
                    int last_block_column = componentInfo.Width_in_blocks - 1;
                    for (int block_num = 0; block_num <= last_block_column; block_num++)
                    {
                        /* Fetch current DCT block into workspace so we can modify it. */
                        JBLOCK workspace = new JBLOCK();
                        Buffer.BlockCopy(buffer[bufferIndex][0].data, 0, workspace.data, 0, workspace.data.Length * sizeof(short));

                        /* Update DC values */
                        if (block_num < last_block_column)
                        {
                            DC3 = buffer[prev_block_row][1][0];
                            DC6 = buffer[bufferIndex][1][0];
                            DC9 = buffer[next_block_row][1][0];
                        }

                        /* Compute coefficient estimates per K.8.
                         * An estimate is applied only if coefficient is still zero,
                         * and is not known to be fully accurate.
                         */
                        /* AC01 */
                        int Al = m_coef_bits_latch[m_coef_bits_savedOffset + coefBitsOffset + 1];
                        if (Al != 0 && workspace[1] == 0)
                        {
                            int pred;
                            int num = 36 * Q00 * (DC4 - DC6);
                            if (num >= 0)
                            {
                                pred = ((Q01 << 7) + num) / (Q01 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                            }
                            else
                            {
                                pred = ((Q01 << 7) - num) / (Q01 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                                pred = -pred;
                            }
                            workspace[1] = (short) pred;
                        }

                        /* AC10 */
                        Al = m_coef_bits_latch[m_coef_bits_savedOffset + coefBitsOffset + 2];
                        if (Al != 0 && workspace[8] == 0)
                        {
                            int pred;
                            int num = 36 * Q00 * (DC2 - DC8);
                            if (num >= 0)
                            {
                                pred = ((Q10 << 7) + num) / (Q10 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                            }
                            else
                            {
                                pred = ((Q10 << 7) - num) / (Q10 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                                pred = -pred;
                            }
                            workspace[8] = (short) pred;
                        }

                        /* AC20 */
                        Al = m_coef_bits_latch[m_coef_bits_savedOffset + coefBitsOffset + 3];
                        if (Al != 0 && workspace[16] == 0)
                        {
                            int pred;
                            int num = 9 * Q00 * (DC2 + DC8 - 2 * DC5);
                            if (num >= 0)
                            {
                                pred = ((Q20 << 7) + num) / (Q20 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                            }
                            else
                            {
                                pred = ((Q20 << 7) - num) / (Q20 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                                pred = -pred;
                            }
                            workspace[16] = (short) pred;
                        }

                        /* AC11 */
                        Al = m_coef_bits_latch[m_coef_bits_savedOffset + coefBitsOffset + 4];
                        if (Al != 0 && workspace[9] == 0)
                        {
                            int pred;
                            int num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
                            if (num >= 0)
                            {
                                pred = ((Q11 << 7) + num) / (Q11 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                            }
                            else
                            {
                                pred = ((Q11 << 7) - num) / (Q11 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                                pred = -pred;
                            }
                            workspace[9] = (short) pred;
                        }

                        /* AC02 */
                        Al = m_coef_bits_latch[m_coef_bits_savedOffset + coefBitsOffset + 5];
                        if (Al != 0 && workspace[2] == 0)
                        {
                            int pred;
                            int num = 9 * Q00 * (DC4 + DC6 - 2 * DC5);
                            if (num >= 0)
                            {
                                pred = ((Q02 << 7) + num) / (Q02 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                            }
                            else
                            {
                                pred = ((Q02 << 7) - num) / (Q02 << 8);
                                if (Al > 0 && pred >= (1 << Al))
                                    pred = (1 << Al) - 1;
                                pred = -pred;
                            }
                            workspace[2] = (short) pred;
                        }

                        /* OK, do the IDCT */
                        m_cinfo.m_idct.inverse(componentInfo.Component_index, workspace.data, output_buf[outputIndex], 0, output_col);

                        /* Advance for next column */
                        DC1 = DC2;
                        DC2 = DC3;
                        DC4 = DC5;
                        DC5 = DC6;
                        DC7 = DC8;
                        DC8 = DC9;

                        bufferIndex++;
                        prev_block_row++;
                        next_block_row++;

                        output_col += componentInfo.DCT_scaled_size;
                    }

                    outputIndex += componentInfo.DCT_scaled_size;
                }
            }

            m_cinfo.m_output_iMCU_row++;
            if (m_cinfo.m_output_iMCU_row < m_cinfo.m_total_iMCU_rows)
                return ReadResult.JPEG_ROW_COMPLETED;

            return ReadResult.JPEG_SCAN_COMPLETED;
        }
        private void ycc_rgb_convert(ComponentBuffer[] input_buf, int input_row, byte[][] output_buf, int output_row, int num_rows)
        {
            int component0RowOffset = m_perComponentOffsets[0];
            int component1RowOffset = m_perComponentOffsets[1];
            int component2RowOffset = m_perComponentOffsets[2];

            byte[] limit = m_cinfo.m_sample_range_limit;
            int limitOffset = m_cinfo.m_sampleRangeLimitOffset;

            for (int row = 0; row < num_rows; row++)
            {
                int columnOffset = 0;
                for (int col = 0; col < m_cinfo.m_output_width; col++)
                {
                    int y = input_buf[0][input_row + component0RowOffset][col];
                    int cb = input_buf[1][input_row + component1RowOffset][col];
                    int cr = input_buf[2][input_row + component2RowOffset][col];

                    /* Range-limiting is essential due to noise introduced by DCT losses. */
                    output_buf[output_row + row][columnOffset + JpegConstants.RGB_RED] = limit[limitOffset + y + m_Cr_r_tab[cr]];
                    output_buf[output_row + row][columnOffset + JpegConstants.RGB_GREEN] = limit[limitOffset + y + JpegUtils.RIGHT_SHIFT(m_Cb_g_tab[cb] + m_Cr_g_tab[cr], SCALEBITS)];
                    output_buf[output_row + row][columnOffset + JpegConstants.RGB_BLUE] = limit[limitOffset + y + m_Cb_b_tab[cb]];
                    columnOffset += JpegConstants.RGB_PIXELSIZE;
                }

                input_row++;
            }
        }
Esempio n. 15
0
        public my_upsampler(jpeg_decompress_struct cinfo)
        {
            m_cinfo             = cinfo;
            m_need_context_rows = false;  /* until we find out differently */

            if (cinfo.m_CCIR601_sampling) /* this isn't supported */
            {
                cinfo.ERREXIT(J_MESSAGE_CODE.JERR_CCIR601_NOTIMPL);
            }

            /* jpeg_d_main_controller doesn't support context rows when min_DCT_scaled_size = 1,
             * so don't ask for it.
             */
            bool do_fancy = cinfo.m_do_fancy_upsampling && cinfo.m_min_DCT_scaled_size > 1;

            /* Verify we can handle the sampling factors, select per-component methods,
             * and create storage as needed.
             */
            for (int ci = 0; ci < cinfo.m_num_components; ci++)
            {
                jpeg_component_info componentInfo = cinfo.Comp_info[ci];

                /* Compute size of an "input group" after IDCT scaling.  This many samples
                 * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
                 */
                int h_in_group  = (componentInfo.H_samp_factor * componentInfo.DCT_scaled_size) / cinfo.m_min_DCT_scaled_size;
                int v_in_group  = (componentInfo.V_samp_factor * componentInfo.DCT_scaled_size) / cinfo.m_min_DCT_scaled_size;
                int h_out_group = cinfo.m_max_h_samp_factor;
                int v_out_group = cinfo.m_max_v_samp_factor;

                /* save for use later */
                m_rowgroup_height[ci] = v_in_group;
                bool need_buffer = true;
                if (!componentInfo.component_needed)
                {
                    /* Don't bother to upsample an uninteresting component. */
                    m_upsampleMethods[ci] = ComponentUpsampler.noop_upsampler;
                    need_buffer           = false;
                }
                else if (h_in_group == h_out_group && v_in_group == v_out_group)
                {
                    /* Fullsize components can be processed without any work. */
                    m_upsampleMethods[ci] = ComponentUpsampler.fullsize_upsampler;
                    need_buffer           = false;
                }
                else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group)
                {
                    /* Special cases for 2h1v upsampling */
                    if (do_fancy && componentInfo.downsampled_width > 2)
                    {
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v1_fancy_upsampler;
                    }
                    else
                    {
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v1_upsampler;
                    }
                }
                else if (h_in_group * 2 == h_out_group && v_in_group * 2 == v_out_group)
                {
                    /* Special cases for 2h2v upsampling */
                    if (do_fancy && componentInfo.downsampled_width > 2)
                    {
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v2_fancy_upsampler;
                        m_need_context_rows   = true;
                    }
                    else
                    {
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v2_upsampler;
                    }
                }
                else if ((h_out_group % h_in_group) == 0 && (v_out_group % v_in_group) == 0)
                {
                    /* Generic integral-factors upsampling method */
                    m_upsampleMethods[ci] = ComponentUpsampler.int_upsampler;
                    m_h_expand[ci]        = (byte)(h_out_group / h_in_group);
                    m_v_expand[ci]        = (byte)(v_out_group / v_in_group);
                }
                else
                {
                    cinfo.ERREXIT(J_MESSAGE_CODE.JERR_FRACT_SAMPLE_NOTIMPL);
                }

                if (need_buffer)
                {
                    ComponentBuffer cb = new ComponentBuffer();
                    cb.SetBuffer(jpeg_common_struct.AllocJpegSamples(JpegUtils.jround_up(cinfo.m_output_width,
                                                                                         cinfo.m_max_h_samp_factor), cinfo.m_max_v_samp_factor), null, 0);

                    m_color_buf[ci] = cb;
                }
            }
        }
        /// <summary>
        /// Process some data.
        /// This handles the simple case where no context is required.
        /// </summary>
        private void process_data_simple_main(byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
        {
            ComponentBuffer[] cb = new ComponentBuffer[JpegConstants.MAX_COMPONENTS];
            for (int i = 0; i < JpegConstants.MAX_COMPONENTS; i++)
            {
                cb[i] = new ComponentBuffer();
                cb[i].SetBuffer(m_buffer[i], null, 0);
            }

            /* Read input data if we haven't filled the main buffer yet */
            if (!m_buffer_full)
            {
                if (m_cinfo.m_coef.decompress_data(cb) == ReadResult.JPEG_SUSPENDED)
                {
                    /* suspension forced, can do nothing more */
                    return;
                }

                /* OK, we have an iMCU row to work with */
                m_buffer_full = true;
            }

            /* There are always min_DCT_scaled_size row groups in an iMCU row. */
            int rowgroups_avail = m_cinfo.m_min_DCT_scaled_size;

            /* Note: at the bottom of the image, we may pass extra garbage row groups
             * to the postprocessor.  The postprocessor has to check for bottom
             * of image anyway (at row resolution), so no point in us doing it too.
             */

            /* Feed the postprocessor */
            m_cinfo.m_post.post_process_data(cb, ref m_rowgroup_ctr, rowgroups_avail, output_buf, ref out_row_ctr, out_rows_avail);

            /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
            if (m_rowgroup_ctr >= rowgroups_avail)
            {
                m_buffer_full = false;
                m_rowgroup_ctr = 0;
            }
        }
Esempio n. 17
0
 public static void jcopy_sample_rows(ComponentBuffer input_array, int source_row, ComponentBuffer output_array, int dest_row, int num_rows, int num_cols)
 {
     for (int row = 0; row < num_rows; row++)
         Buffer.BlockCopy(input_array[source_row + row], 0, output_array[dest_row + row], 0, num_cols);
 }
Esempio n. 18
0
 public abstract void upsample(ComponentBuffer[] input_buf, ref int in_row_group_ctr, int in_row_groups_avail, byte[][] output_buf, ref int out_row_ctr, int out_rows_avail);
        /// <summary>
        /// Process some data.
        /// This handles the case where context rows must be provided.
        /// </summary>
        private void process_data_context_main(byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
        {
            ComponentBuffer[] cb = new ComponentBuffer[m_cinfo.m_num_components];
            for (int i = 0; i < m_cinfo.m_num_components; i++)
            {
                cb[i] = new ComponentBuffer();
                cb[i].SetBuffer(m_buffer[i], m_funnyIndices[m_whichFunny][i], m_funnyOffsets[i]);
            }

            /* Read input data if we haven't filled the main buffer yet */
            if (!m_buffer_full)
            {
                if (m_cinfo.m_coef.decompress_data(cb) == ReadResult.JPEG_SUSPENDED)
                {
                    /* suspension forced, can do nothing more */
                    return;
                }

                /* OK, we have an iMCU row to work with */
                m_buffer_full = true;

                /* count rows received */
                m_iMCU_row_ctr++;
            }

            /* Postprocessor typically will not swallow all the input data it is handed
             * in one call (due to filling the output buffer first).  Must be prepared
             * to exit and restart.

             This switch lets us keep track of how far we got.
             * Note that each case falls through to the next on successful completion.
             */
            if (m_context_state == CTX_POSTPONED_ROW)
            {
                /* Call postprocessor using previously set pointers for postponed row */
                m_cinfo.m_post.post_process_data(cb, ref m_rowgroup_ctr,
                    m_rowgroups_avail, output_buf, ref out_row_ctr, out_rows_avail);

                if (m_rowgroup_ctr < m_rowgroups_avail)
                {
                    /* Need to suspend */
                    return;
                }

                m_context_state = CTX_PREPARE_FOR_IMCU;

                if (out_row_ctr >= out_rows_avail)
                {
                    /* Postprocessor exactly filled output buf */
                    return;
                }
            }

            if (m_context_state == CTX_PREPARE_FOR_IMCU)
            {
                /* Prepare to process first M-1 row groups of this iMCU row */
                m_rowgroup_ctr = 0;
                m_rowgroups_avail = m_cinfo.m_min_DCT_scaled_size - 1;

                /* Check for bottom of image: if so, tweak pointers to "duplicate"
                 * the last sample row, and adjust rowgroups_avail to ignore padding rows.
                 */
                if (m_iMCU_row_ctr == m_cinfo.m_total_iMCU_rows)
                    set_bottom_pointers();

                m_context_state = CTX_PROCESS_IMCU;
            }

            if (m_context_state == CTX_PROCESS_IMCU)
            {
                /* Call postprocessor using previously set pointers */
                m_cinfo.m_post.post_process_data(cb, ref m_rowgroup_ctr,
                    m_rowgroups_avail, output_buf, ref out_row_ctr, out_rows_avail);

                if (m_rowgroup_ctr < m_rowgroups_avail)
                {
                    /* Need to suspend */
                    return;
                }

                /* After the first iMCU, change wraparound pointers to normal state */
                if (m_iMCU_row_ctr == 1)
                    set_wraparound_pointers();

                /* Prepare to load new iMCU row using other xbuffer list */
                m_whichFunny ^= 1;    /* 0=>1 or 1=>0 */
                m_buffer_full = false;

                /* Still need to process last row group of this iMCU row, */
                /* which is saved at index M+1 of the other xbuffer */
                m_rowgroup_ctr = m_cinfo.m_min_DCT_scaled_size + 1;
                m_rowgroups_avail = m_cinfo.m_min_DCT_scaled_size + 2;
                m_context_state = CTX_POSTPONED_ROW;
            }
        }
        /// <summary>
        /// Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
        /// </summary>
        private void h2v2_merged_upsample(ComponentBuffer[] input_buf, int in_row_group_ctr, byte[][] output_buf)
        {
            int inputRow00 = in_row_group_ctr * 2;
            int inputIndex00 = 0;

            int inputRow01 = in_row_group_ctr * 2 + 1;
            int inputIndex01 = 0;

            int inputIndex1 = 0;
            int inputIndex2 = 0;

            int outIndex0 = 0;
            int outIndex1 = 0;

            byte[] limit = m_cinfo.m_sample_range_limit;
            int limitOffset = m_cinfo.m_sampleRangeLimitOffset;

            /* Loop for each group of output pixels */
            for (int col = m_cinfo.m_output_width >> 1; col > 0; col--)
            {
                /* Do the chroma part of the calculation */
                int cb = input_buf[1][in_row_group_ctr][inputIndex1];
                inputIndex1++;

                int cr = input_buf[2][in_row_group_ctr][inputIndex2];
                inputIndex2++;

                int cred = m_Cr_r_tab[cr];
                int cgreen = JpegUtils.RIGHT_SHIFT(m_Cb_g_tab[cb] + m_Cr_g_tab[cr], SCALEBITS);
                int cblue = m_Cb_b_tab[cb];

                /* Fetch 4 Y values and emit 4 pixels */
                int y = input_buf[0][inputRow00][inputIndex00];
                inputIndex00++;

                output_buf[0][outIndex0 + JpegConstants.RGB_RED] = limit[limitOffset + y + cred];
                output_buf[0][outIndex0 + JpegConstants.RGB_GREEN] = limit[limitOffset + y + cgreen];
                output_buf[0][outIndex0 + JpegConstants.RGB_BLUE] = limit[limitOffset + y + cblue];
                outIndex0 += JpegConstants.RGB_PIXELSIZE;
                
                y = input_buf[0][inputRow00][inputIndex00];
                inputIndex00++;

                output_buf[0][outIndex0 + JpegConstants.RGB_RED] = limit[limitOffset + y + cred];
                output_buf[0][outIndex0 + JpegConstants.RGB_GREEN] = limit[limitOffset + y + cgreen];
                output_buf[0][outIndex0 + JpegConstants.RGB_BLUE] = limit[limitOffset + y + cblue];
                outIndex0 += JpegConstants.RGB_PIXELSIZE;
                
                y = input_buf[0][inputRow01][inputIndex01];
                inputIndex01++;

                output_buf[1][outIndex1 + JpegConstants.RGB_RED] = limit[limitOffset + y + cred];
                output_buf[1][outIndex1 + JpegConstants.RGB_GREEN] = limit[limitOffset + y + cgreen];
                output_buf[1][outIndex1 + JpegConstants.RGB_BLUE] = limit[limitOffset + y + cblue];
                outIndex1 += JpegConstants.RGB_PIXELSIZE;
                
                y = input_buf[0][inputRow01][inputIndex01];
                inputIndex01++;

                output_buf[1][outIndex1 + JpegConstants.RGB_RED] = limit[limitOffset + y + cred];
                output_buf[1][outIndex1 + JpegConstants.RGB_GREEN] = limit[limitOffset + y + cgreen];
                output_buf[1][outIndex1 + JpegConstants.RGB_BLUE] = limit[limitOffset + y + cblue];
                outIndex1 += JpegConstants.RGB_PIXELSIZE;
            }

            /* If image width is odd, do the last output column separately */
            if ((m_cinfo.m_output_width & 1) != 0)
            {
                int cb = input_buf[1][in_row_group_ctr][inputIndex1];
                int cr = input_buf[2][in_row_group_ctr][inputIndex2];
                int cred = m_Cr_r_tab[cr];
                int cgreen = JpegUtils.RIGHT_SHIFT(m_Cb_g_tab[cb] + m_Cr_g_tab[cr], SCALEBITS);
                int cblue = m_Cb_b_tab[cb];

                int y = input_buf[0][inputRow00][inputIndex00];
                output_buf[0][outIndex0 + JpegConstants.RGB_RED] = limit[limitOffset + y + cred];
                output_buf[0][outIndex0 + JpegConstants.RGB_GREEN] = limit[limitOffset + y + cgreen];
                output_buf[0][outIndex0 + JpegConstants.RGB_BLUE] = limit[limitOffset + y + cblue];
                
                y = input_buf[0][inputRow01][inputIndex01];
                output_buf[1][outIndex1 + JpegConstants.RGB_RED] = limit[limitOffset + y + cred];
                output_buf[1][outIndex1 + JpegConstants.RGB_GREEN] = limit[limitOffset + y + cgreen];
                output_buf[1][outIndex1 + JpegConstants.RGB_BLUE] = limit[limitOffset + y + cblue];
            }
        }
        /// <summary>
        /// Control routine to do upsampling (and color conversion).
        /// The control routine just handles the row buffering considerations.
        /// 2:1 vertical sampling case: may need a spare row.
        /// </summary>
        private void merged_2v_upsample(ComponentBuffer[] input_buf, ref int in_row_group_ctr, byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
        {
            int num_rows;        /* number of rows returned to caller */
            if (m_spare_full)
            {
                /* If we have a spare row saved from a previous cycle, just return it. */
                byte[][] temp = new byte[1][];
                temp[0] = m_spare_row;
                JpegUtils.jcopy_sample_rows(temp, 0, output_buf, out_row_ctr, 1, m_out_row_width);
                num_rows = 1;
                m_spare_full = false;
            }
            else
            {
                /* Figure number of rows to return to caller. */
                num_rows = 2;

                /* Not more than the distance to the end of the image. */
                if (num_rows > m_rows_to_go)
                    num_rows = m_rows_to_go;
                
                /* And not more than what the client can accept: */
                out_rows_avail -= out_row_ctr;
                if (num_rows > out_rows_avail)
                    num_rows = out_rows_avail;
                
                /* Create output pointer array for upsampler. */
                byte[][] work_ptrs = new byte[2][];
                work_ptrs[0] = output_buf[out_row_ctr];
                if (num_rows > 1)
                {
                    work_ptrs[1] = output_buf[out_row_ctr + 1];
                }
                else
                {
                    work_ptrs[1] = m_spare_row;
                    m_spare_full = true;
                }

                /* Now do the upsampling. */
                h2v2_merged_upsample(input_buf, in_row_group_ctr, work_ptrs);
            }

            /* Adjust counts */
            out_row_ctr += num_rows;
            m_rows_to_go -= num_rows;

            /* When the buffer is emptied, declare this input row group consumed */
            if (!m_spare_full)
                in_row_group_ctr++;
        }
        /// <summary>
        /// Control routine to do upsampling (and color conversion).
        /// The control routine just handles the row buffering considerations.
        /// 1:1 vertical sampling case: much easier, never need a spare row.
        /// </summary>
        private void merged_1v_upsample(ComponentBuffer[] input_buf, ref int in_row_group_ctr, byte[][] output_buf, ref int out_row_ctr)
        {
            /* Just do the upsampling. */
            h2v1_merged_upsample(input_buf, in_row_group_ctr, output_buf, out_row_ctr);

            /* Adjust counts */
            out_row_ctr++;
            in_row_group_ctr++;
        }
Esempio n. 23
0
        /// <summary>
        /// This version handles any integral sampling ratios.
        /// This is not used for typical JPEG files, so it need not be fast.
        /// Nor, for that matter, is it particularly accurate: the algorithm is
        /// simple replication of the input pixel onto the corresponding output
        /// pixels.  The hi-falutin sampling literature refers to this as a
        /// "box filter".  A box filter tends to introduce visible artifacts,
        /// so if you are actually going to use 3:1 or 4:1 sampling ratios
        /// you would be well advised to improve this code.
        /// </summary>
        private void int_upsample(ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];
            int h_expand = m_h_expand[m_currentComponent];
            int v_expand = m_v_expand[m_currentComponent];

            int inrow = 0;
            int outrow = 0;
            while (outrow < m_cinfo.m_max_v_samp_factor)
            {
                /* Generate one output row with proper horizontal expansion */
                int row = m_upsampleRowOffset + inrow;
                for (int col = 0; col < m_cinfo.m_output_width; col++)
                {
                    byte invalue = input_data[row][col]; /* don't need GETJSAMPLE() here */
                    int outIndex = 0;
                    for (int h = h_expand; h > 0; h--)
                    {
                        output_data[outrow][outIndex] = invalue;
                        outIndex++;
                    }
                }
                
                /* Generate any additional output rows by duplicating the first one */
                if (v_expand > 1)
                {
                    JpegUtils.jcopy_sample_rows(output_data, outrow, output_data, 
                        outrow + 1, v_expand - 1, m_cinfo.m_output_width);
                }

                inrow++;
                outrow += v_expand;
            }
        }
        /// <summary>
        /// Alternate entry point to read raw data.
        /// </summary>
        /// <param name="data">The raw data.</param>
        /// <param name="max_lines">The number of scanlines for reading.</param>
        /// <returns>The number of lines actually read.</returns>
        /// <remarks>Replaces <see cref="jpeg_decompress_struct.jpeg_read_scanlines">jpeg_read_scanlines</see> 
        /// when reading raw downsampled data. Processes exactly one iMCU row per call, unless suspended.
        /// </remarks>
        public int jpeg_read_raw_data(byte[][][] data, int max_lines)
        {
            if (m_global_state != JpegState.DSTATE_RAW_OK)
                ERREXIT(J_MESSAGE_CODE.JERR_BAD_STATE, (int)m_global_state);

            if (m_output_scanline >= m_output_height)
            {
                WARNMS(J_MESSAGE_CODE.JWRN_TOO_MUCH_DATA);
                return 0;
            }

            /* Call progress monitor hook if present */
            if (m_progress != null)
            {
                m_progress.Pass_counter = m_output_scanline;
                m_progress.Pass_limit = m_output_height;
                m_progress.Updated();
            }

            /* Verify that at least one iMCU row can be returned. */
            int lines_per_iMCU_row = m_max_v_samp_factor * m_min_DCT_scaled_size;
            if (max_lines < lines_per_iMCU_row)
                ERREXIT(J_MESSAGE_CODE.JERR_BUFFER_SIZE);

            int componentCount = data.Length; // maybe we should use max_lines here
            ComponentBuffer[] cb = new ComponentBuffer[componentCount];
            for (int i = 0; i < componentCount; i++)
            {
                cb[i] = new ComponentBuffer();
                cb[i].SetBuffer(data[i], null, 0);
            }

            /* Decompress directly into user's buffer. */
            if (m_coef.decompress_data(cb) == ReadResult.JPEG_SUSPENDED)
            {
                /* suspension forced, can do nothing more */
                return 0;
            }

            /* OK, we processed one iMCU row. */
            m_output_scanline += lines_per_iMCU_row;
            return lines_per_iMCU_row;
        }
 public override void upsample(ComponentBuffer[] input_buf, ref int in_row_group_ctr, int in_row_groups_avail, byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
 {
     if (m_use_2v_upsample)
         merged_2v_upsample(input_buf, ref in_row_group_ctr, output_buf, ref out_row_ctr, out_rows_avail);
     else
         merged_1v_upsample(input_buf, ref in_row_group_ctr, output_buf, ref out_row_ctr);
 }
 /* Inverse DCT (also performs dequantization) */
 public void inverse(int component_index, short[] coef_block, ComponentBuffer output_buf, int output_row, int output_col)
 {
     m_componentBuffer = output_buf;
     switch (m_inverse_DCT_method[component_index])
     {
         case InverseMethod.idct_1x1_method:
             jpeg_idct_1x1(component_index, coef_block, output_row, output_col);
             break;
         case InverseMethod.idct_2x2_method:
             jpeg_idct_2x2(component_index, coef_block, output_row, output_col);
             break;
         case InverseMethod.idct_4x4_method:
             jpeg_idct_4x4(component_index, coef_block, output_row, output_col);
             break;
         case InverseMethod.idct_islow_method:
             jpeg_idct_islow(component_index, coef_block, output_row, output_col);
             break;
         case InverseMethod.idct_ifast_method:
             jpeg_idct_ifast(component_index, coef_block, output_row, output_col);
             break;
         case InverseMethod.idct_float_method:
             jpeg_idct_float(component_index, coef_block, output_row, output_col);
             break;
         case InverseMethod.Unknown:
         default:
             m_cinfo.ERREXIT(J_MESSAGE_CODE.JERR_NOT_COMPILED);
             break;
     }
 }
        /// <summary>
        /// Convert some rows of samples to the output colorspace.
        /// 
        /// Note that we change from noninterleaved, one-plane-per-component format
        /// to interleaved-pixel format.  The output buffer is therefore three times
        /// as wide as the input buffer.
        /// A starting row offset is provided only for the input buffer.  The caller
        /// can easily adjust the passed output_buf value to accommodate any row
        /// offset required on that side.
        /// </summary>
        public void color_convert(ComponentBuffer[] input_buf, int[] perComponentOffsets, int input_row, byte[][] output_buf, int output_row, int num_rows)
        {
            m_perComponentOffsets = perComponentOffsets;

            switch (m_converter)
            {
                case ColorConverter.grayscale_converter:
                    grayscale_convert(input_buf, input_row, output_buf, output_row, num_rows);
                    break;
                case ColorConverter.ycc_rgb_converter:
                    ycc_rgb_convert(input_buf, input_row, output_buf, output_row, num_rows);
                    break;
                case ColorConverter.gray_rgb_converter:
                    gray_rgb_convert(input_buf, input_row, output_buf, output_row, num_rows);
                    break;
                case ColorConverter.null_converter:
                    null_convert(input_buf, input_row, output_buf, output_row, num_rows);
                    break;
                case ColorConverter.ycck_cmyk_converter:
                    ycck_cmyk_convert(input_buf, input_row, output_buf, output_row, num_rows);
                    break;
                default:
                    m_cinfo.ERREXIT(J_MESSAGE_CODE.JERR_CONVERSION_NOTIMPL);
                    break;
            }
        }
 /// <summary>
 /// Color conversion for grayscale: just copy the data.
 /// This also works for YCbCr -> grayscale conversion, in which
 /// we just copy the Y (luminance) component and ignore chrominance.
 /// </summary>
 private void grayscale_convert(ComponentBuffer[] input_buf, int input_row, byte[][] output_buf, int output_row, int num_rows)
 {
     JpegUtils.jcopy_sample_rows(input_buf[0], input_row + m_perComponentOffsets[0], output_buf, output_row, num_rows, m_cinfo.m_output_width);
 }
Esempio n. 29
0
        public ReadResult decompress_data(ComponentBuffer[] output_buf)
        {
            switch (m_decompressor)
            {
                case DecompressorType.Ordinary:
                    return decompress_data_ordinary(output_buf);

                case DecompressorType.Smooth:
                    return decompress_smooth_data(output_buf);

                case DecompressorType.OnePass:
                    return decompress_onepass(output_buf);
            }

            m_cinfo.ERREXIT(J_MESSAGE_CODE.JERR_NOTIMPL);
            return 0;
        }
        /// <summary>
        /// Process some data.
        /// This handles the case where context rows must be provided.
        /// </summary>
        private void process_data_context_main(byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
        {
            ComponentBuffer[] cb = new ComponentBuffer[m_cinfo.m_num_components];
            for (int i = 0; i < m_cinfo.m_num_components; i++)
            {
                cb[i] = new ComponentBuffer();
                cb[i].SetBuffer(m_buffer[i], m_funnyIndices[m_whichFunny][i], m_funnyOffsets[i]);
            }

            /* Read input data if we haven't filled the main buffer yet */
            if (!m_buffer_full)
            {
                if (m_cinfo.m_coef.decompress_data(cb) == ReadResult.JPEG_SUSPENDED)
                {
                    /* suspension forced, can do nothing more */
                    return;
                }

                /* OK, we have an iMCU row to work with */
                m_buffer_full = true;

                /* count rows received */
                m_iMCU_row_ctr++;
            }

            /* Postprocessor typically will not swallow all the input data it is handed
             * in one call (due to filling the output buffer first).  Must be prepared
             * to exit and restart.
             *
             *
             * This switch lets us keep track of how far we got.
             * Note that each case falls through to the next on successful completion.
             */
            if (m_context_state == CTX_POSTPONED_ROW)
            {
                /* Call postprocessor using previously set pointers for postponed row */
                m_cinfo.m_post.post_process_data(cb, ref m_rowgroup_ctr,
                                                 m_rowgroups_avail, output_buf, ref out_row_ctr, out_rows_avail);

                if (m_rowgroup_ctr < m_rowgroups_avail)
                {
                    /* Need to suspend */
                    return;
                }

                m_context_state = CTX_PREPARE_FOR_IMCU;

                if (out_row_ctr >= out_rows_avail)
                {
                    /* Postprocessor exactly filled output buf */
                    return;
                }
            }

            if (m_context_state == CTX_PREPARE_FOR_IMCU)
            {
                /* Prepare to process first M-1 row groups of this iMCU row */
                m_rowgroup_ctr    = 0;
                m_rowgroups_avail = m_cinfo.m_min_DCT_scaled_size - 1;

                /* Check for bottom of image: if so, tweak pointers to "duplicate"
                 * the last sample row, and adjust rowgroups_avail to ignore padding rows.
                 */
                if (m_iMCU_row_ctr == m_cinfo.m_total_iMCU_rows)
                {
                    set_bottom_pointers();
                }

                m_context_state = CTX_PROCESS_IMCU;
            }

            if (m_context_state == CTX_PROCESS_IMCU)
            {
                /* Call postprocessor using previously set pointers */
                m_cinfo.m_post.post_process_data(cb, ref m_rowgroup_ctr,
                                                 m_rowgroups_avail, output_buf, ref out_row_ctr, out_rows_avail);

                if (m_rowgroup_ctr < m_rowgroups_avail)
                {
                    /* Need to suspend */
                    return;
                }

                /* After the first iMCU, change wraparound pointers to normal state */
                if (m_iMCU_row_ctr == 1)
                {
                    set_wraparound_pointers();
                }

                /* Prepare to load new iMCU row using other xbuffer list */
                m_whichFunny ^= 1;    /* 0=>1 or 1=>0 */
                m_buffer_full = false;

                /* Still need to process last row group of this iMCU row, */
                /* which is saved at index M+1 of the other xbuffer */
                m_rowgroup_ctr    = m_cinfo.m_min_DCT_scaled_size + 1;
                m_rowgroups_avail = m_cinfo.m_min_DCT_scaled_size + 2;
                m_context_state   = CTX_POSTPONED_ROW;
            }
        }
Esempio n. 31
0
        /// <summary>
        /// Decompress and return some data in the single-pass case.
        /// Always attempts to emit one fully interleaved MCU row ("iMCU" row).
        /// Input and output must run in lockstep since we have only a one-MCU buffer.
        /// Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
        /// 
        /// NB: output_buf contains a plane for each component in image,
        /// which we index according to the component's SOF position.
        /// </summary>
        private ReadResult decompress_onepass(ComponentBuffer[] output_buf)
        {
            int last_MCU_col = m_cinfo.m_MCUs_per_row - 1;
            int last_iMCU_row = m_cinfo.m_total_iMCU_rows - 1;

            /* Loop to process as much as one whole iMCU row */
            for (int yoffset = m_MCU_vert_offset; yoffset < m_MCU_rows_per_iMCU_row; yoffset++)
            {
                for (int MCU_col_num = m_MCU_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++)
                {
                    /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
                    for (int i = 0; i < m_cinfo.m_blocks_in_MCU; i++)
                        Array.Clear(m_MCU_buffer[i].data, 0, m_MCU_buffer[i].data.Length);

                    if (!m_cinfo.m_entropy.decode_mcu(m_MCU_buffer))
                    {
                        /* Suspension forced; update state counters and exit */
                        m_MCU_vert_offset = yoffset;
                        m_MCU_ctr = MCU_col_num;
                        return ReadResult.JPEG_SUSPENDED;
                    }

                    /* Determine where data should go in output_buf and do the IDCT thing.
                     * We skip dummy blocks at the right and bottom edges (but blkn gets
                     * incremented past them!).  Note the inner loop relies on having
                     * allocated the MCU_buffer[] blocks sequentially.
                     */
                    int blkn = 0;           /* index of current DCT block within MCU */
                    for (int ci = 0; ci < m_cinfo.m_comps_in_scan; ci++)
                    {
                        jpeg_component_info componentInfo = m_cinfo.Comp_info[m_cinfo.m_cur_comp_info[ci]];

                        /* Don't bother to IDCT an uninteresting component. */
                        if (!componentInfo.component_needed)
                        {
                            blkn += componentInfo.MCU_blocks;
                            continue;
                        }

                        int useful_width = (MCU_col_num < last_MCU_col) ? componentInfo.MCU_width : componentInfo.last_col_width;
                        int outputIndex = yoffset * componentInfo.DCT_scaled_size;
                        int start_col = MCU_col_num * componentInfo.MCU_sample_width;
                        for (int yindex = 0; yindex < componentInfo.MCU_height; yindex++)
                        {
                            if (m_cinfo.m_input_iMCU_row < last_iMCU_row || yoffset + yindex < componentInfo.last_row_height)
                            {
                                int output_col = start_col;
                                for (int xindex = 0; xindex < useful_width; xindex++)
                                {
                                    m_cinfo.m_idct.inverse(componentInfo.Component_index,
                                        m_MCU_buffer[blkn + xindex].data, output_buf[componentInfo.Component_index],
                                        outputIndex, output_col);

                                    output_col += componentInfo.DCT_scaled_size;
                                }
                            }

                            blkn += componentInfo.MCU_width;
                            outputIndex += componentInfo.DCT_scaled_size;
                        }
                    }
                }

                /* Completed an MCU row, but perhaps not an iMCU row */
                m_MCU_ctr = 0;
            }

            /* Completed the iMCU row, advance counters for next one */
            m_cinfo.m_output_iMCU_row++;
            m_cinfo.m_input_iMCU_row++;
            if (m_cinfo.m_input_iMCU_row < m_cinfo.m_total_iMCU_rows)
            {
                start_iMCU_row();
                return ReadResult.JPEG_ROW_COMPLETED;
            }

            /* Completed the scan */
            m_cinfo.m_inputctl.finish_input_pass();
            return ReadResult.JPEG_SCAN_COMPLETED;
        }
        /// <summary>
        /// Process some data in the first pass of 2-pass quantization.
        /// </summary>
        private void post_process_prepass(ComponentBuffer[] input_buf, ref int in_row_group_ctr, int in_row_groups_avail, ref int out_row_ctr)
        {
            int old_next_row, num_rows;

            /* Reposition virtual buffer if at start of strip. */
            if (m_next_row == 0)
                m_buffer = m_whole_image.Access(m_starting_row, m_strip_height);

            /* Upsample some data (up to a strip height's worth). */
            old_next_row = m_next_row;
            m_cinfo.m_upsample.upsample(input_buf, ref in_row_group_ctr, in_row_groups_avail, m_buffer, ref m_next_row, m_strip_height);

            /* Allow quantizer to scan new data.  No data is emitted, */
            /* but we advance out_row_ctr so outer loop can tell when we're done. */
            if (m_next_row > old_next_row)
            {
                num_rows = m_next_row - old_next_row;
                m_cinfo.m_cquantize.color_quantize(m_buffer, old_next_row, null, 0, num_rows);
                out_row_ctr += num_rows;
            }

            /* Advance if we filled the strip. */
            if (m_next_row >= m_strip_height)
            {
                m_starting_row += m_strip_height;
                m_next_row = 0;
            }
        }
Esempio n. 33
0
        /// <summary>
        /// Control routine to do upsampling (and color conversion).
        /// 
        /// In this version we upsample each component independently.
        /// We upsample one row group into the conversion buffer, then apply
        /// color conversion a row at a time.
        /// </summary>
        public override void upsample(ComponentBuffer[] input_buf, ref int in_row_group_ctr, int in_row_groups_avail, byte[][] output_buf, ref int out_row_ctr, int out_rows_avail)
        {
            /* Fill the conversion buffer, if it's empty */
            if (m_next_row_out >= m_cinfo.m_max_v_samp_factor)
            {
                for (int ci = 0; ci < m_cinfo.m_num_components; ci++)
                {
                    m_perComponentOffsets[ci] = 0;

                    /* Invoke per-component upsample method.*/
                    m_currentComponent = ci;
                    m_upsampleRowOffset = in_row_group_ctr * m_rowgroup_height[ci];
                    upsampleComponent(ref input_buf[ci]);
                }

                m_next_row_out = 0;
            }

            /* Color-convert and emit rows */

            /* How many we have in the buffer: */
            int num_rows = m_cinfo.m_max_v_samp_factor - m_next_row_out;

            /* Not more than the distance to the end of the image.  Need this test
             * in case the image height is not a multiple of max_v_samp_factor:
             */
            if (num_rows > m_rows_to_go)
                num_rows = m_rows_to_go;

            /* And not more than what the client can accept: */
            out_rows_avail -= out_row_ctr;
            if (num_rows > out_rows_avail)
                num_rows = out_rows_avail;

            m_cinfo.m_cconvert.color_convert(m_color_buf, m_perComponentOffsets, m_next_row_out, output_buf, out_row_ctr, num_rows);

            /* Adjust counts */
            out_row_ctr += num_rows;
            m_rows_to_go -= num_rows;
            m_next_row_out += num_rows;

            /* When the buffer is emptied, declare this input row group consumed */
            if (m_next_row_out >= m_cinfo.m_max_v_samp_factor)
                in_row_group_ctr++;
        }
Esempio n. 34
0
 /// <summary>
 /// For full-size components, we just make color_buf[ci] point at the
 /// input buffer, and thus avoid copying any data.  Note that this is
 /// safe only because sep_upsample doesn't declare the input row group
 /// "consumed" until we are done color converting and emitting it.
 /// </summary>
 private void fullsize_upsample(ref ComponentBuffer input_data)
 {
     m_color_buf[m_currentComponent]           = input_data;
     m_perComponentOffsets[m_currentComponent] = m_upsampleRowOffset;
 }
Esempio n. 35
0
 /// <summary>
 /// For full-size components, we just make color_buf[ci] point at the
 /// input buffer, and thus avoid copying any data.  Note that this is
 /// safe only because sep_upsample doesn't declare the input row group
 /// "consumed" until we are done color converting and emitting it.
 /// </summary>
 private void fullsize_upsample(ref ComponentBuffer input_data)
 {
     m_color_buf[m_currentComponent] = input_data;
     m_perComponentOffsets[m_currentComponent] = m_upsampleRowOffset;
 }
        /// <summary>
        /// Convert grayscale to RGB: just duplicate the graylevel three times.
        /// This is provided to support applications that don't want to cope
        /// with grayscale as a separate case.
        /// </summary>
        private void gray_rgb_convert(ComponentBuffer[] input_buf, int input_row, byte[][] output_buf, int output_row, int num_rows)
        {
            int component0RowOffset = m_perComponentOffsets[0];
            int component1RowOffset = m_perComponentOffsets[1];
            int component2RowOffset = m_perComponentOffsets[2];

            int num_cols = m_cinfo.m_output_width;
            for (int row = 0; row < num_rows; row++)
            {
                int columnOffset = 0;
                for (int col = 0; col < num_cols; col++)
                {
                    /* We can dispense with GETJSAMPLE() here */
                    output_buf[output_row + row][columnOffset + JpegConstants.RGB_RED] = input_buf[0][input_row + component0RowOffset][col];
                    output_buf[output_row + row][columnOffset + JpegConstants.RGB_GREEN] = input_buf[0][input_row + component1RowOffset][col];
                    output_buf[output_row + row][columnOffset + JpegConstants.RGB_BLUE] = input_buf[0][input_row + component2RowOffset][col];
                    columnOffset += JpegConstants.RGB_PIXELSIZE;
                }

                input_row++;
            }
        }
Esempio n. 37
0
        /// <summary>
        /// Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
        /// It's still a box filter.
        /// </summary>
        private void h2v1_upsample(ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            for (int inrow = 0; inrow < m_cinfo.m_max_v_samp_factor; inrow++)
            {
                int row = m_upsampleRowOffset + inrow;
                int outIndex = 0;

                for (int col = 0; col < m_cinfo.m_output_width; col++)
                {
                    byte invalue = input_data[row][col]; /* don't need GETJSAMPLE() here */
                    output_data[inrow][outIndex] = invalue;
                    outIndex++;
                    output_data[inrow][outIndex] = invalue;
                    outIndex++;
                }
            }
        }
        /**************** Cases other than YCbCr -> RGB **************/

        /// <summary>
        /// Adobe-style YCCK->CMYK conversion.
        /// We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
        /// conversion as above, while passing K (black) unchanged.
        /// We assume build_ycc_rgb_table has been called.
        /// </summary>
        private void ycck_cmyk_convert(ComponentBuffer[] input_buf, int input_row, byte[][] output_buf, int output_row, int num_rows)
        {
            int component0RowOffset = m_perComponentOffsets[0];
            int component1RowOffset = m_perComponentOffsets[1];
            int component2RowOffset = m_perComponentOffsets[2];
            int component3RowOffset = m_perComponentOffsets[3];

            byte[] limit = m_cinfo.m_sample_range_limit;
            int limitOffset = m_cinfo.m_sampleRangeLimitOffset;

            int num_cols = m_cinfo.m_output_width;
            for (int row = 0; row < num_rows; row++)
            {
                int columnOffset = 0;
                for (int col = 0; col < num_cols; col++)
                {
                    int y = input_buf[0][input_row + component0RowOffset][col];
                    int cb = input_buf[1][input_row + component1RowOffset][col];
                    int cr = input_buf[2][input_row + component2RowOffset][col];

                    /* Range-limiting is essential due to noise introduced by DCT losses. */
                    output_buf[output_row + row][columnOffset] = limit[limitOffset + JpegConstants.MAXJSAMPLE - (y + m_Cr_r_tab[cr])]; /* red */
                    output_buf[output_row + row][columnOffset + 1] = limit[limitOffset + JpegConstants.MAXJSAMPLE - (y + JpegUtils.RIGHT_SHIFT(m_Cb_g_tab[cb] + m_Cr_g_tab[cr], SCALEBITS))]; /* green */
                    output_buf[output_row + row][columnOffset + 2] = limit[limitOffset + JpegConstants.MAXJSAMPLE - (y + m_Cb_b_tab[cb])]; /* blue */
                    
                    /* K passes through unchanged */
                    /* don't need GETJSAMPLE here */
                    output_buf[output_row + row][columnOffset + 3] = input_buf[3][input_row + component3RowOffset][col];
                    columnOffset += 4;
                }

                input_row++;
            }
        }
Esempio n. 39
0
        /// <summary>
        /// Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
        /// It's still a box filter.
        /// </summary>
        private void h2v2_upsample(ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            int inrow = 0;
            int outrow = 0;
            while (outrow < m_cinfo.m_max_v_samp_factor)
            {
                int row = m_upsampleRowOffset + inrow;
                int outIndex = 0;

                for (int col = 0; col < m_cinfo.m_output_width; col++)
                {
                    byte invalue = input_data[row][col]; /* don't need GETJSAMPLE() here */
                    output_data[outrow][outIndex] = invalue;
                    outIndex++;
                    output_data[outrow][outIndex] = invalue;
                    outIndex++;
                }

                JpegUtils.jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1, m_cinfo.m_output_width);
                inrow++;
                outrow += 2;
            }
        }
Esempio n. 40
0
        /// <summary>
        /// Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
        /// Again a triangle filter; see comments for h2v1 case, above.
        ///
        /// It is OK for us to reference the adjacent input rows because we demanded
        /// context from the main buffer controller (see initialization code).
        /// </summary>
        private void h2v2_fancy_upsample(int downsampled_width, ref ComponentBuffer input_data)
        {
            ComponentBuffer output_data = m_color_buf[m_currentComponent];

            int inrow  = m_upsampleRowOffset;
            int outrow = 0;

            while (outrow < m_cinfo.m_max_v_samp_factor)
            {
                for (int v = 0; v < 2; v++)
                {
                    // nearest input row index
                    int inIndex0 = 0;

                    //next nearest input row index
                    int inIndex1 = 0;
                    int inRow1   = -1;
                    if (v == 0)
                    {
                        /* next nearest is row above */
                        inRow1 = inrow - 1;
                    }
                    else
                    {
                        /* next nearest is row below */
                        inRow1 = inrow + 1;
                    }

                    int row      = outrow;
                    int outIndex = 0;
                    outrow++;

                    /* Special case for first column */
                    int thiscolsum = (int)input_data[inrow][inIndex0] * 3 + (int)input_data[inRow1][inIndex1];
                    inIndex0++;
                    inIndex1++;

                    int nextcolsum = (int)input_data[inrow][inIndex0] * 3 + (int)input_data[inRow1][inIndex1];
                    inIndex0++;
                    inIndex1++;

                    output_data[row][outIndex] = (byte)((thiscolsum * 4 + 8) >> 4);
                    outIndex++;

                    output_data[row][outIndex] = (byte)((thiscolsum * 3 + nextcolsum + 7) >> 4);
                    outIndex++;

                    int lastcolsum = thiscolsum;
                    thiscolsum = nextcolsum;

                    for (int colctr = downsampled_width - 2; colctr > 0; colctr--)
                    {
                        /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
                        /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
                        nextcolsum = (int)input_data[inrow][inIndex0] * 3 + (int)input_data[inRow1][inIndex1];
                        inIndex0++;
                        inIndex1++;

                        output_data[row][outIndex] = (byte)((thiscolsum * 3 + lastcolsum + 8) >> 4);
                        outIndex++;

                        output_data[row][outIndex] = (byte)((thiscolsum * 3 + nextcolsum + 7) >> 4);
                        outIndex++;

                        lastcolsum = thiscolsum;
                        thiscolsum = nextcolsum;
                    }

                    /* Special case for last column */
                    output_data[row][outIndex] = (byte)((thiscolsum * 3 + lastcolsum + 8) >> 4);
                    outIndex++;
                    output_data[row][outIndex] = (byte)((thiscolsum * 4 + 7) >> 4);
                    outIndex++;
                }

                inrow++;
            }
        }
Esempio n. 41
0
        public my_upsampler(jpeg_decompress_struct cinfo)
        {
            m_cinfo = cinfo;
            m_need_context_rows = false; /* until we find out differently */

            if (cinfo.m_CCIR601_sampling)    /* this isn't supported */
                cinfo.ERREXIT(J_MESSAGE_CODE.JERR_CCIR601_NOTIMPL);

            /* jpeg_d_main_controller doesn't support context rows when min_DCT_scaled_size = 1,
            * so don't ask for it.
            */
            bool do_fancy = cinfo.m_do_fancy_upsampling && cinfo.m_min_DCT_scaled_size > 1;

            /* Verify we can handle the sampling factors, select per-component methods,
            * and create storage as needed.
            */
            for (int ci = 0; ci < cinfo.m_num_components; ci++)
            {
                jpeg_component_info componentInfo = cinfo.Comp_info[ci];

                /* Compute size of an "input group" after IDCT scaling.  This many samples
                * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
                */
                int h_in_group = (componentInfo.H_samp_factor * componentInfo.DCT_scaled_size) / cinfo.m_min_DCT_scaled_size;
                int v_in_group = (componentInfo.V_samp_factor * componentInfo.DCT_scaled_size) / cinfo.m_min_DCT_scaled_size;
                int h_out_group = cinfo.m_max_h_samp_factor;
                int v_out_group = cinfo.m_max_v_samp_factor;

                /* save for use later */
                m_rowgroup_height[ci] = v_in_group;
                bool need_buffer = true;
                if (!componentInfo.component_needed)
                {
                    /* Don't bother to upsample an uninteresting component. */
                    m_upsampleMethods[ci] = ComponentUpsampler.noop_upsampler;
                    need_buffer = false;
                }
                else if (h_in_group == h_out_group && v_in_group == v_out_group)
                {
                    /* Fullsize components can be processed without any work. */
                    m_upsampleMethods[ci] = ComponentUpsampler.fullsize_upsampler;
                    need_buffer = false;
                }
                else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group)
                {
                    /* Special cases for 2h1v upsampling */
                    if (do_fancy && componentInfo.downsampled_width > 2)
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v1_fancy_upsampler;
                    else
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v1_upsampler;
                }
                else if (h_in_group * 2 == h_out_group && v_in_group * 2 == v_out_group)
                {
                    /* Special cases for 2h2v upsampling */
                    if (do_fancy && componentInfo.downsampled_width > 2)
                    {
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v2_fancy_upsampler;
                        m_need_context_rows = true;
                    }
                    else
                    {
                        m_upsampleMethods[ci] = ComponentUpsampler.h2v2_upsampler;
                    }
                }
                else if ((h_out_group % h_in_group) == 0 && (v_out_group % v_in_group) == 0)
                {
                    /* Generic integral-factors upsampling method */
                    m_upsampleMethods[ci] = ComponentUpsampler.int_upsampler;
                    m_h_expand[ci] = (byte) (h_out_group / h_in_group);
                    m_v_expand[ci] = (byte) (v_out_group / v_in_group);
                }
                else
                    cinfo.ERREXIT(J_MESSAGE_CODE.JERR_FRACT_SAMPLE_NOTIMPL);

                if (need_buffer)
                {
                    ComponentBuffer cb = new ComponentBuffer();
                    cb.SetBuffer(jpeg_common_struct.AllocJpegSamples(JpegUtils.jround_up(cinfo.m_output_width, 
                        cinfo.m_max_h_samp_factor), cinfo.m_max_v_samp_factor), null, 0);

                    m_color_buf[ci] = cb;
                }
            }
        }
        /// <summary>
        /// Color conversion for no colorspace change: just copy the data,
        /// converting from separate-planes to interleaved representation.
        /// </summary>
        private void null_convert(ComponentBuffer[] input_buf, int input_row, byte[][] output_buf, int output_row, int num_rows)
        {
            for (int row = 0; row < num_rows; row++)
            {
                for (int ci = 0; ci < m_cinfo.m_num_components; ci++)
                {
                    int columnIndex = 0;
                    int componentOffset = 0;
                    int perComponentOffset = m_perComponentOffsets[ci];

                    for (int count = m_cinfo.m_output_width; count > 0; count--)
                    {
                        /* needn't bother with GETJSAMPLE() here */
                        output_buf[output_row + row][ci + componentOffset] = input_buf[ci][input_row + perComponentOffset][columnIndex];
                        componentOffset += m_cinfo.m_num_components;
                        columnIndex++;
                    }
                }

                input_row++;
            }
        }