Esempio n. 1
0
        /// <summary>
        /// Writes a model to the provided stream.
        /// </summary>
        /// <param name="stream">The output stream</param>
        /// <param name="model">The model to write</param>
        public static void Write(Stream stream, Model model)
        {
            TemporaryCulture.Start();

            StreamWriter output = new StreamWriter(stream);

            Parameter param = model.Parameter;

            output.Write("svm_type " + param.SvmType + "\n");
            output.Write("kernel_type " + param.KernelType + "\n");

            if (param.KernelType == KernelType.POLY)
                output.Write("degree " + param.Degree + "\n");

            if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.RBF || param.KernelType == KernelType.SIGMOID)
                output.Write("gamma " + param.Gamma + "\n");

            if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.SIGMOID)
                output.Write("coef0 " + param.Coefficient0 + "\n");

            int nr_class = model.NumberOfClasses;
            int l = model.SupportVectorCount;
            output.Write("nr_class " + nr_class + "\n");
            output.Write("total_sv " + l + "\n");

            {
                output.Write("rho");
                for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    output.Write(" " + model.Rho[i]);
                output.Write("\n");
            }

            if (model.ClassLabels != null)
            {
                output.Write("label");
                for (int i = 0; i < nr_class; i++)
                    output.Write(" " + model.ClassLabels[i]);
                output.Write("\n");
            }

            if (model.PairwiseProbabilityA != null)
            // regression has probA only
            {
                output.Write("probA");
                for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    output.Write(" " + model.PairwiseProbabilityA[i]);
                output.Write("\n");
            }
            if (model.PairwiseProbabilityB != null)
            {
                output.Write("probB");
                for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    output.Write(" " + model.PairwiseProbabilityB[i]);
                output.Write("\n");
            }

            if (model.NumberOfSVPerClass != null)
            {
                output.Write("nr_sv");
                for (int i = 0; i < nr_class; i++)
                    output.Write(" " + model.NumberOfSVPerClass[i]);
                output.Write("\n");
            }

            output.Write("SV\n");
            double[][] sv_coef = model.SupportVectorCoefficients;
            Node[][] SV = model.SupportVectors;

            for (int i = 0; i < l; i++)
            {
                for (int j = 0; j < nr_class - 1; j++)
                    output.Write(sv_coef[j][i] + " ");

                Node[] p = SV[i];
                if (p.Length == 0)
                {
                    output.WriteLine();
                    continue;
                }
                if (param.KernelType == KernelType.PRECOMPUTED)
                    output.Write("0:{0}", (int)p[0].Value);
                else
                {
                    output.Write("{0}:{1}", p[0].Index, p[0].Value);
                    for (int j = 1; j < p.Length; j++)
                        output.Write(" {0}:{1}", p[j].Index, p[j].Value);
                }
                output.WriteLine();
            }

            output.Flush();

            TemporaryCulture.Stop();
        }
Esempio n. 2
0
 /// <summary>
 /// Writes a model to the provided filename.  This will overwrite any previous data in the file.
 /// </summary>
 /// <param name="filename">The desired file</param>
 /// <param name="model">The Model to write</param>
 public static void Write(string filename, Model model)
 {
     FileStream stream = File.Open(filename, FileMode.Create);
     try
     {
         Write(stream, model);
     }
     finally
     {
         stream.Close();
     }
 }
Esempio n. 3
0
        /// <summary>
        /// Reads a Model from the provided stream.
        /// </summary>
        /// <param name="stream">The stream from which to read the Model.</param>
        /// <returns>the Model</returns>
        public static Model Read(Stream stream)
        {
            TemporaryCulture.Start();

            StreamReader input = new StreamReader(stream);

            // read parameters

            Model model = new Model();
            Parameter param = new Parameter();
            model.Parameter = param;
            model.Rho = null;
            model.PairwiseProbabilityA = null;
            model.PairwiseProbabilityB = null;
            model.ClassLabels = null;
            model.NumberOfSVPerClass = null;

            bool headerFinished = false;
            while (!headerFinished)
            {
                string line = input.ReadLine();
                string cmd, arg;
                int splitIndex = line.IndexOf(' ');
                if (splitIndex >= 0)
                {
                    cmd = line.Substring(0, splitIndex);
                    arg = line.Substring(splitIndex + 1);
                }
                else
                {
                    cmd = line;
                    arg = "";
                }
                arg = arg.ToLower();

                int i, n;
                switch (cmd)
                {
                    case "svm_type":
                        param.SvmType = (SvmType)Enum.Parse(typeof(SvmType), arg.ToUpper());
                        break;

                    case "kernel_type":
                        param.KernelType = (KernelType)Enum.Parse(typeof(KernelType), arg.ToUpper());
                        break;

                    case "degree":
                        param.Degree = int.Parse(arg);
                        break;

                    case "gamma":
                        param.Gamma = double.Parse(arg);
                        break;

                    case "coef0":
                        param.Coefficient0 = double.Parse(arg);
                        break;

                    case "nr_class":
                        model.NumberOfClasses = int.Parse(arg);
                        break;

                    case "total_sv":
                        model.SupportVectorCount = int.Parse(arg);
                        break;

                    case "rho":
                        n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
                        model.Rho = new double[n];
                        string[] rhoParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.Rho[i] = double.Parse(rhoParts[i]);
                        break;

                    case "label":
                        n = model.NumberOfClasses;
                        model.ClassLabels = new int[n];
                        string[] labelParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.ClassLabels[i] = int.Parse(labelParts[i]);
                        break;

                    case "probA":
                        n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
                        model.PairwiseProbabilityA = new double[n];
                        string[] probAParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.PairwiseProbabilityA[i] = double.Parse(probAParts[i]);
                        break;

                    case "probB":
                        n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
                        model.PairwiseProbabilityB = new double[n];
                        string[] probBParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.PairwiseProbabilityB[i] = double.Parse(probBParts[i]);
                        break;

                    case "nr_sv":
                        n = model.NumberOfClasses;
                        model.NumberOfSVPerClass = new int[n];
                        string[] nrsvParts = arg.Split();
                        for (i = 0; i < n; i++)
                            model.NumberOfSVPerClass[i] = int.Parse(nrsvParts[i]);
                        break;

                    case "SV":
                        headerFinished = true;
                        break;

                    default:
                        throw new Exception("Unknown text in model file");
                }
            }

            // read sv_coef and SV

            int m = model.NumberOfClasses - 1;
            int l = model.SupportVectorCount;
            model.SupportVectorCoefficients = new double[m][];
            for (int i = 0; i < m; i++)
            {
                model.SupportVectorCoefficients[i] = new double[l];
            }
            model.SupportVectors = new Node[l][];

            for (int i = 0; i < l; i++)
            {
                string[] parts = input.ReadLine().Trim().Split();

                for (int k = 0; k < m; k++)
                    model.SupportVectorCoefficients[k][i] = double.Parse(parts[k]);
                int n = parts.Length - m;
                model.SupportVectors[i] = new Node[n];
                for (int j = 0; j < n; j++)
                {
                    string[] nodeParts = parts[m + j].Split(':');
                    model.SupportVectors[i][j] = new Node();
                    model.SupportVectors[i][j].Index = int.Parse(nodeParts[0]);
                    model.SupportVectors[i][j].Value = double.Parse(nodeParts[1]);
                }
            }

            TemporaryCulture.Stop();

            return model;
        }
Esempio n. 4
0
        /// <summary>
        /// Predicts the class memberships of all the vectors in the problem.
        /// </summary>
        /// <param name="problem">The SVM Problem to solve</param>
        /// <param name="outputFile">File for result output</param>
        /// <param name="model">The Model to use</param>
        /// <param name="predict_probability">Whether to output a distribution over the classes</param>
        /// <returns>Percentage correctly labelled</returns>
        public static double Predict(
            Problem problem,
            string outputFile,
            Model model,
            bool predict_probability)
        {
            int correct = 0;
            int total = 0;
            double error = 0;
            double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
            StreamWriter output = outputFile != null ? new StreamWriter(outputFile) : null;

            SvmType svm_type = Procedures.svm_get_svm_type(model);
            int nr_class = Procedures.svm_get_nr_class(model);
            int[] labels = new int[nr_class];
            double[] prob_estimates = null;

            if (predict_probability)
            {
                if (svm_type == SvmType.EPSILON_SVR || svm_type == SvmType.NU_SVR)
                {
                    Console.WriteLine("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + Procedures.svm_get_svr_probability(model));
                }
                else
                {
                    Procedures.svm_get_labels(model, labels);
                    prob_estimates = new double[nr_class];
                    if (output != null)
                    {
                        output.Write("labels");
                        for (int j = 0; j < nr_class; j++)
                        {
                            output.Write(" " + labels[j]);
                        }
                        output.Write("\n");
                    }
                }
            }
            else
            {
                Procedures.svm_get_labels(model, labels);
                if (output != null)
                {
                    output.Write("labels");
                    for (int j = 0; j < nr_class; j++)
                    {
                        output.Write(" " + labels[j]);
                    }
                    output.Write("\n");
                }
            }
            for (int i = 0; i < problem.Count; i++)
            {
                double target = problem.Y[i];
                Node[] x = problem.X[i];

                double v;
                if (predict_probability && (svm_type == SvmType.C_SVC || svm_type == SvmType.NU_SVC))
                {
                    v = Procedures.svm_predict_probability(model, x, prob_estimates);
                    if (output != null)
                    {
                        output.Write(target + " " + v + " ");
                        for (int j = 0; j < nr_class; j++)
                        {
                            output.Write(prob_estimates[j] + " ");
                        }
                        output.Write("\n");
                    }
                }
                else
                {
                    v = Procedures.svm_predict(model, x);
                    if (output != null)
                        output.Write(target + " " + v + "\n");
                }

                if (v == target)
                    ++correct;
                error += (v - target) * (v - target);
                sumv += v;
                sumy += target;
                sumvv += v * v;
                sumyy += target * target;
                sumvy += v * target;
                ++total;
            }
            if (output != null)
                output.Close();
            return (double)correct / total;
        }
Esempio n. 5
0
 /// <summary>
 /// Predicts a class distribution for the single input vector.
 /// </summary>
 /// <param name="model">Model to use for prediction</param>
 /// <param name="x">The vector for which to predict the class distribution</param>
 /// <returns>A probability distribtion over classes</returns>
 public static double[] PredictProbability(Model model, Node[] x)
 {
     SvmType svm_type = Procedures.svm_get_svm_type(model);
     if (svm_type != SvmType.C_SVC && svm_type != SvmType.NU_SVC)
         throw new Exception("Model type " + svm_type + " unable to predict probabilities.");
     int nr_class = Procedures.svm_get_nr_class(model);
     double[] probEstimates = new double[nr_class];
     Procedures.svm_predict_probability(model, x, probEstimates);
     return probEstimates;
 }
Esempio n. 6
0
 /// <summary>
 /// Predict the class for a single input vector.
 /// </summary>
 /// <param name="model">The Model to use for prediction</param>
 /// <param name="x">The vector for which to predict class</param>
 /// <returns>The result</returns>
 public static double Predict(Model model, Node[] x)
 {
     return Procedures.svm_predict(model, x);
 }