Esempio n. 1
0
 // relax vertex v and put other endpoints on queue if changed
 private void Relax(EdgeWeightedDigraph g, int v)
 {
     foreach (var e in g.Adj(v))
     {
         var w = e.To();
         if (_distTo[w] > _distTo[v] + e.Weight)
         {
             _distTo[w] = _distTo[v] + e.Weight;
             _edgeTo[w] = e;
             if (!_onQueue[w])
             {
                 _queue.Enqueue(w);
                 _onQueue[w] = true;
             }
         }
         if (_cost++ % g.V == 0)
         {
             FindNegativeCycle();
             if (HasNegativeCycle())
             {
                 return;                      // found a negative cycle
             }
         }
     }
 }
Esempio n. 2
0
        /// <summary>
        /// check that algorithm computes either the topological order or finds a directed cycle
        /// </summary>
        /// <param name="g"></param>
        /// <param name="v"></param>
        private void Dfs(EdgeWeightedDigraph g, int v)
        {
            _onStack[v] = true;
            _marked[v]  = true;
            foreach (var e in g.Adj(v))
            {
                var w = e.To();

                // short circuit if directed cycle found
                if (_cycle != null)
                {
                    return;
                }

                //found new vertex, so recur
                if (!_marked[w])
                {
                    _edgeTo[w] = e;
                    Dfs(g, w);
                }

                // trace back directed cycle
                else if (_onStack[w])
                {
                    TraceBackDirectedCycle(e, w);
                    return;
                }
            }

            _onStack[v] = false;
        }
Esempio n. 3
0
        private readonly IndexMinPQ <Double> _pq;   // priority queue of vertices

        /// <summary>
        /// Computes a shortest-paths tree from the source vertex <tt>s</tt> to every other
        /// vertex in the edge-weighted digraph <tt>G</tt>.
        /// </summary>
        /// <param name="g">g the edge-weighted digraph</param>
        /// <param name="s">s the source vertex</param>
        /// <exception cref="ArgumentException">if an edge weight is negative</exception>
        /// <exception cref="ArgumentException">unless 0 &lt;= <tt>s</tt> &lt;= <tt>V</tt> - 1</exception>
        public DijkstraSP(EdgeWeightedDigraph g, int s)
        {
            foreach (var e in g.Edges())
            {
                if (e.Weight < 0)
                {
                    throw new ArgumentException($"edge {e} has negative weight");
                }
            }

            _distTo = new double[g.V];
            _edgeTo = new DirectedEdge[g.V];
            for (var v = 0; v < g.V; v++)
            {
                _distTo[v] = double.PositiveInfinity;
            }
            _distTo[s] = 0.0;

            // relax vertices in order of distance from s
            _pq = new IndexMinPQ <Double>(g.V);
            _pq.Insert(s, _distTo[s]);
            while (!_pq.IsEmpty())
            {
                var v = _pq.DelMin();
                foreach (var e in g.Adj(v))
                {
                    Relax(e);
                }
            }

            // check optimality conditions
            //assert check(G, s);
        }
Esempio n. 4
0
        private readonly IndexMinPQ<Double> _pq; // priority queue of vertices

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Computes a shortest-paths tree from the source vertex <tt>s</tt> to every other
        /// vertex in the edge-weighted digraph <tt>G</tt>.
        /// </summary>
        /// <param name="g">g the edge-weighted digraph</param>
        /// <param name="s">s the source vertex</param>
        /// <exception cref="ArgumentException">if an edge weight is negative</exception>
        /// <exception cref="ArgumentException">unless 0 &lt;= <tt>s</tt> &lt;= <tt>V</tt> - 1</exception>
        public DijkstraSP(EdgeWeightedDigraph g, int s)
        {
            foreach (var e in g.Edges())
            {
                if (e.Weight < 0)
                    throw new ArgumentException($"edge {e} has negative weight");
            }

            _distTo = new double[g.V];
            _edgeTo = new DirectedEdge[g.V];
            for (var v = 0; v < g.V; v++)
                _distTo[v] = double.PositiveInfinity;
            _distTo[s] = 0.0;

            // relax vertices in order of distance from s
            _pq = new IndexMinPQ<Double>(g.V);
            _pq.Insert(s, _distTo[s]);
            while (!_pq.IsEmpty())
            {
                var v = _pq.DelMin();
                foreach (var e in g.Adj(v))
                    Relax(e);
            }

            // check optimality conditions
            //assert check(G, s);
        }
Esempio n. 5
0
        private readonly DirectedEdge[] _edgeTo;   // edgeTo[v] = last edge on shortest s->v path


        /// <summary>
        /// Computes a shortest paths tree from <tt>s</tt> to every other vertex in
        /// the directed acyclic graph <tt>G</tt>.
        /// </summary>
        /// <param name="g">g the acyclic digraph</param>
        /// <param name="s">s the source vertex</param>
        /// <exception cref="ArgumentException">if the digraph is not acyclic</exception>
        /// <exception cref="ArgumentException">unless 0 &lt;= <tt>s</tt> &lt;= <tt>V</tt> - 1</exception>
        public AcyclicSP(EdgeWeightedDigraph g, int s)
        {
            _distTo = new double[g.V];
            _edgeTo = new DirectedEdge[g.V];
            for (var v = 0; v < g.V; v++)
            {
                _distTo[v] = double.PositiveInfinity;
            }
            _distTo[s] = 0.0;

            // visit vertices in toplogical order
            var topological = new Topological(g);

            if (!topological.HasOrder())
            {
                throw new ArgumentException("Digraph is not acyclic.");
            }
            foreach (int v in topological.Order())
            {
                foreach (var e in g.Adj(v))
                {
                    Relax(e);
                }
            }
        }
Esempio n. 6
0
 /// <summary>
 /// run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder
 /// </summary>
 /// <param name="g"></param>
 /// <param name="v"></param>
 private void Dfs(EdgeWeightedDigraph g, int v)
 {
     _marked[v] = true;
     _pre[v]    = _preCounter++;
     _preorder.Enqueue(v);
     foreach (var e in g.Adj(v))
     {
         var w = e.To();
         if (!_marked[w])
         {
             Dfs(g, w);
         }
     }
     _postorder.Enqueue(v);
     _post[v] = _postCounter++;
 }
Esempio n. 7
0
        private readonly DirectedEdge[] _edgeTo; // edgeTo[v] = last edge on longest s->v path

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Computes a longest paths tree from <tt>s</tt> to every other vertex in
        /// the directed acyclic graph <tt>G</tt>.
        /// </summary>
        /// <param name="g">g the acyclic digraph</param>
        /// <param name="s">s the source vertex</param>
        /// <exception cref="ArgumentException">if the digraph is not acyclic</exception>
        /// <exception cref="ArgumentException">unless 0 &lt;= <tt>s</tt> &lt;= <tt>V</tt> - 1</exception>
        public AcyclicLP(EdgeWeightedDigraph g, int s)
        {
            _distTo = new double[g.V];
            _edgeTo = new DirectedEdge[g.V];
            for (var v = 0; v < g.V; v++)
                _distTo[v] = double.NegativeInfinity;
            _distTo[s] = 0.0;

            // relax vertices in toplogical order
            var topological = new Topological(g);
            if (!topological.HasOrder())
                throw new ArgumentException("Digraph is not acyclic.");
            foreach (int v in topological.Order())
            {
                foreach (var e in g.Adj(v))
                    Relax(e);
            }
        }
Esempio n. 8
0
 // check optimality conditions
 private bool Check(EdgeWeightedDigraph g, int s)
 {
     // no negative cycle
     if (!HasNegativeCycle)
     {
         for (var v = 0; v < g.V; v++)
         {
             foreach (var e in g.Adj(v))
             {
                 var w = e.To();
                 for (var i = 0; i < g.V; i++)
                 {
                     if (_distTo[i][w] > _distTo[i][v] + e.Weight)
                     {
                         Console.WriteLine($"edge {e} is eligible");
                         return(false);
                     }
                 }
             }
         }
     }
     return(true);
 }
Esempio n. 9
0
 /// <summary>
 /// run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder
 /// </summary>
 /// <param name="g"></param>
 /// <param name="v"></param>
 private void Dfs(EdgeWeightedDigraph g, int v)
 {
     _marked[v] = true;
     _pre[v] = _preCounter++;
     _preorder.Enqueue(v);
     foreach (var e in g.Adj(v))
     {
         var w = e.To();
         if (!_marked[w])
         {
             Dfs(g, w);
         }
     }
     _postorder.Enqueue(v);
     _post[v] = _postCounter++;
 }
Esempio n. 10
0
        /// <summary>
        /// check optimality conditions:
        /// (i) for all edges e:            distTo[e.to()] &lt;= distTo[e.from()] + e.weight()
        /// (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
        /// </summary>
        /// <param name="g"></param>
        /// <param name="s"></param>
        /// <returns></returns>
        public bool Check(EdgeWeightedDigraph g, int s)
        {
            // check that edge weights are nonnegative
            if (g.Edges().Any(e => e.Weight < 0))
            {
                Console.Error.WriteLine("negative edge weight detected");
                return(false);
            }

            // check that distTo[v] and edgeTo[v] are consistent
            if (Math.Abs(_distTo[s]) > 1E12 || _edgeTo[s] != null)
            {
                Console.Error.WriteLine("distTo[s] and edgeTo[s] inconsistent");
                return(false);
            }
            for (var v = 0; v < g.V; v++)
            {
                if (v == s)
                {
                    continue;
                }
                if (_edgeTo[v] == null && !double.IsPositiveInfinity(_distTo[v]))
                {
                    Console.Error.WriteLine("distTo[] and edgeTo[] inconsistent");
                    return(false);
                }
            }

            // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
            for (var v = 0; v < g.V; v++)
            {
                foreach (var e in g.Adj(v))
                {
                    int w = e.To();
                    if (_distTo[v] + e.Weight < _distTo[w])
                    {
                        Console.Error.WriteLine($"edge {e} not relaxed");
                        return(false);
                    }
                }
            }

            // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
            for (var w = 0; w < g.V; w++)
            {
                if (_edgeTo[w] == null)
                {
                    continue;
                }
                var e = _edgeTo[w];
                var v = e.From();
                if (w != e.To())
                {
                    return(false);
                }
                if (Math.Abs(_distTo[v] + e.Weight - _distTo[w]) > 1E12)
                {
                    Console.Error.WriteLine($"edge {e} on shortest path not tight");
                    return(false);
                }
            }
            return(true);
        }
Esempio n. 11
0
        // check optimality conditions: either
        // (i) there exists a negative cycle reacheable from s
        //     or
        // (ii)  for all edges e = v->w:            distTo[w] <= distTo[v] + e.weight()
        // (ii') for all edges e = v->w on the SPT: distTo[w] == distTo[v] + e.weight()
        private bool Check(EdgeWeightedDigraph g, int s)
        {
            // has a negative cycle
            if (HasNegativeCycle())
            {
                var weight = NegativeCycle().Sum(e => e.Weight);
                if (weight >= 0.0)
                {
                    Console.WriteLine($"error: weight of negative cycle = {weight}");
                    return(false);
                }
            }

            // no negative cycle reachable from source
            else
            {
                // check that distTo[v] and edgeTo[v] are consistent
                if (Math.Abs(_distTo[s]) > 0.0001 || _edgeTo[s] != null)
                {
                    Console.WriteLine("distanceTo[s] and edgeTo[s] inconsistent");
                    return(false);
                }
                for (var v = 0; v < g.V; v++)
                {
                    if (v == s)
                    {
                        continue;
                    }
                    if (_edgeTo[v] != null || double.IsPositiveInfinity(_distTo[v]))
                    {
                        continue;
                    }
                    Console.WriteLine("distTo[] and edgeTo[] inconsistent");
                    return(false);
                }

                // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
                for (var v = 0; v < g.V; v++)
                {
                    foreach (var e in g.Adj(v))
                    {
                        var w = e.To();
                        if (!(_distTo[v] + e.Weight < _distTo[w]))
                        {
                            continue;
                        }
                        Console.WriteLine($"edge {e} not relaxed");
                        return(false);
                    }
                }

                // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
                for (var w = 0; w < g.V; w++)
                {
                    if (_edgeTo[w] == null)
                    {
                        continue;
                    }
                    var e = _edgeTo[w];
                    var v = e.From();
                    if (w != e.To())
                    {
                        return(false);
                    }
                    if (Math.Abs(_distTo[v] + e.Weight - _distTo[w]) < 0.0001)
                    {
                        continue;
                    }
                    Console.WriteLine($"edge {e} on shortest path not tight");
                    return(false);
                }
            }
            Console.WriteLine("Satisfies optimality conditions");
            Console.WriteLine();
            return(true);
        }
        /// <summary>
        /// check that algorithm computes either the topological order or finds a directed cycle
        /// </summary>
        /// <param name="g"></param>
        /// <param name="v"></param>
        private void Dfs(EdgeWeightedDigraph g, int v)
        {
            _onStack[v] = true;
            _marked[v] = true;
            foreach (var e in g.Adj(v))
            {
                var w = e.To();

                // short circuit if directed cycle found
                if (_cycle != null) return;

                //found new vertex, so recur
                if (!_marked[w])
                {
                    _edgeTo[w] = e;
                    Dfs(g, w);
                }

                // trace back directed cycle
                else if (_onStack[w])
                {
                    TraceBackDirectedCycle(e, w);
                    return;
                }
            }

            _onStack[v] = false;
        }
Esempio n. 13
0
        /// <summary>
        /// check optimality conditions:
        /// (i) for all edges e:            distTo[e.to()] &lt;= distTo[e.from()] + e.weight()
        /// (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
        /// </summary>
        /// <param name="g"></param>
        /// <param name="s"></param>
        /// <returns></returns>
        public bool Check(EdgeWeightedDigraph g, int s)
        {
            // check that edge weights are nonnegative
            if (g.Edges().Any(e => e.Weight < 0))
            {
                Console.Error.WriteLine("negative edge weight detected");
                return false;
            }

            // check that distTo[v] and edgeTo[v] are consistent
            if (Math.Abs(_distTo[s]) > 1E12 || _edgeTo[s] != null)
            {
                Console.Error.WriteLine("distTo[s] and edgeTo[s] inconsistent");
                return false;
            }
            for (var v = 0; v < g.V; v++)
            {
                if (v == s) continue;
                if (_edgeTo[v] == null && !double.IsPositiveInfinity(_distTo[v]))
                {
                    Console.Error.WriteLine("distTo[] and edgeTo[] inconsistent");
                    return false;
                }
            }

            // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
            for (var v = 0; v < g.V; v++)
            {
                foreach (var e in g.Adj(v))
                {
                    int w = e.To();
                    if (_distTo[v] + e.Weight < _distTo[w])
                    {
                        Console.Error.WriteLine($"edge {e} not relaxed");
                        return false;
                    }
                }
            }

            // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
            for (var w = 0; w < g.V; w++)
            {
                if (_edgeTo[w] == null) continue;
                var e = _edgeTo[w];
                var v = e.From();
                if (w != e.To()) return false;
                if (Math.Abs(_distTo[v] + e.Weight - _distTo[w]) > 1E12)
                {
                    Console.Error.WriteLine($"edge {e} on shortest path not tight");
                    return false;
                }
            }
            return true;
        }
Esempio n. 14
0
 // check optimality conditions
 private bool Check(EdgeWeightedDigraph g, int s)
 {
     // no negative cycle
     if (!HasNegativeCycle)
     {
         for (var v = 0; v < g.V; v++)
         {
             foreach (var e in g.Adj(v))
             {
                 var w = e.To();
                 for (var i = 0; i < g.V; i++)
                 {
                     if (_distTo[i][w] > _distTo[i][v] + e.Weight)
                     {
                         Console.WriteLine($"edge {e} is eligible");
                         return false;
                     }
                 }
             }
         }
     }
     return true;
 }
Esempio n. 15
0
 // relax vertex v and put other endpoints on queue if changed
 private void Relax(EdgeWeightedDigraph g, int v)
 {
     foreach (var e in g.Adj(v))
     {
         var w = e.To();
         if (_distTo[w] > _distTo[v] + e.Weight)
         {
             _distTo[w] = _distTo[v] + e.Weight;
             _edgeTo[w] = e;
             if (!_onQueue[w])
             {
                 _queue.Enqueue(w);
                 _onQueue[w] = true;
             }
         }
         if (_cost++ % g.V == 0)
         {
             FindNegativeCycle();
             if (HasNegativeCycle()) return;  // found a negative cycle
         }
     }
 }
Esempio n. 16
0
        // check optimality conditions: either
        // (i) there exists a negative cycle reacheable from s
        //     or
        // (ii)  for all edges e = v->w:            distTo[w] <= distTo[v] + e.weight()
        // (ii') for all edges e = v->w on the SPT: distTo[w] == distTo[v] + e.weight()
        private bool Check(EdgeWeightedDigraph g, int s)
        {
            // has a negative cycle
            if (HasNegativeCycle())
            {
                var weight = NegativeCycle().Sum(e => e.Weight);
                if (weight >= 0.0)
                {
                    Console.WriteLine($"error: weight of negative cycle = {weight}");
                    return false;
                }
            }

            // no negative cycle reachable from source
            else
            {

                // check that distTo[v] and edgeTo[v] are consistent
                if (Math.Abs(_distTo[s]) > 0.0001 || _edgeTo[s] != null)
                {
                    Console.WriteLine("distanceTo[s] and edgeTo[s] inconsistent");
                    return false;
                }
                for (var v = 0; v < g.V; v++)
                {
                    if (v == s) continue;
                    if (_edgeTo[v] != null || double.IsPositiveInfinity(_distTo[v])) continue;
                    Console.WriteLine("distTo[] and edgeTo[] inconsistent");
                    return false;
                }

                // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
                for (var v = 0; v < g.V; v++)
                {
                    foreach (var e in g.Adj(v))
                    {
                        var w = e.To();
                        if (!(_distTo[v] + e.Weight < _distTo[w])) continue;
                        Console.WriteLine($"edge {e} not relaxed");
                        return false;
                    }
                }

                // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
                for (var w = 0; w < g.V; w++)
                {
                    if (_edgeTo[w] == null) continue;
                    var e = _edgeTo[w];
                    var v = e.From();
                    if (w != e.To()) return false;
                    if (Math.Abs(_distTo[v] + e.Weight - _distTo[w]) < 0.0001) continue;
                    Console.WriteLine($"edge {e} on shortest path not tight");
                    return false;
                }
            }
            Console.WriteLine("Satisfies optimality conditions");
            Console.WriteLine();
            return true;
        }