public Experiment(string name, EEGRecord er, AMLearning ml, bool enabled) { Name = name; _er = er; _ml = ml; _enabled = enabled; _ml.Progress += new ChangedValuesEventHandler(_ml_Progress); }
public void SaveModel(AMLearning model) { if (!File.Exists(DbSettings.fullpath + ".eq")) { db.CreateDatabase(DbSettings.fullpath); } db.OpenDatabase(DbSettings.fullpath); db.RefreshMode = ObjectRefreshMode.AlwaysReturnUpdatedValues; db.Store(model); db.Close(); }
private void listBoxModels_SelectedIndexChanged(object sender, EventArgs e) { if (listBoxModels.SelectedIndex != -1) { model = models[listBoxModels.SelectedIndex]; listBoxClasses.Items.Clear(); foreach (var item in model.ActionList) { listBoxClasses.Items.Add(item.Key); } } }
private void buttonCalculate_Click(object sender, EventArgs e) { //if (AsyncWorkerCalculate.IsBusy) //{ // buttonCalculate.Enabled = false; // AsyncWorkerCalculate.CancelAsync(); //} //else //start new process { listBoxLogger.Items.Insert(0, "Creating machine learning model to be used for classification..."); if (currentRecord.FeatureVectorsOutputInput.Count == 0) { MessageBox.Show("First you need to record/load some data for specific action!"); return; } buttonCalculate.Enabled = false; //buttonCalculate.Text = "Cancel"; startCalculateModel = DateTime.Now; switch (cbMethods.SelectedIndex) { case 0: model = new LdaSVM("ldasvm"); break; case 1: model = new LdaMLP("ldamlp"); break; case 2: model = new LdaRBF("ldarbf"); break; case 3: model = new OctaveMulticlassLogisticRegression("omlr"); break; } model.ActionList = currentRecord.actions; model.Progress += new ChangedValuesEventHandler(model_Progress); AsyncWorkerCalculate.RunWorkerAsync(); } }