Esempio n. 1
0
        private void initialize(double[][][] samples, TwoWayAnovaModel type)
        {
            // References:
            // -  http://www.smi.hst.aau.dk/~cdahl/BiostatPhD/ANOVA.pdf

            ModelType    = type;
            Observations = FirstFactorSamples * SecondFactorSamples * Replications;


            // Step 1. Initialize all degrees of freedom
            int cellDegreesOfFreedom  = FirstFactorSamples * SecondFactorSamples - 1;
            int aDegreesOfFreedom     = FirstFactorSamples - 1;
            int bDegreesOfFreedom     = SecondFactorSamples - 1;
            int abDegreesOfFreedom    = cellDegreesOfFreedom - aDegreesOfFreedom - bDegreesOfFreedom;
            int errorDegreesOfFreedom = FirstFactorSamples * SecondFactorSamples * (Replications - 1);
            int totalDegreesOfFreedom = Observations - 1;


            // Step 1. Calculate cell means
            cellMeans = new double[FirstFactorSamples, SecondFactorSamples];

            double sum = 0;

            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    sum += cellMeans[i, j] = Measures.Mean(samples[i][j]);
                }
            }


            // Step 2. Calculate the total mean (grand mean)
            totalMean = sum / (FirstFactorSamples * SecondFactorSamples);


            // Step 3. Calculate factor means
            aMean = new double[FirstFactorSamples];
            for (int i = 0; i < samples.Length; i++)
            {
                sum = 0;
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        sum += samples[i][j][k];
                    }
                }

                aMean[i] = sum / (SecondFactorSamples * Replications);
            }

            bMean = new double[SecondFactorSamples];
            for (int j = 0; j < samples[0].Length; j++)
            {
                sum = 0;
                for (int i = 0; i < samples.Length; i++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        sum += samples[i][j][k];
                    }
                }

                bMean[j] = sum / (FirstFactorSamples * Replications);
            }


            // Step 4. Calculate total sum of squares
            double ssum = 0;

            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - totalMean;
                        ssum += u * u;
                    }
                }
            }
            double totalSumOfSquares = ssum;


            // Step 5. Calculate the cell sum of squares
            ssum = 0;
            for (int i = 0; i < FirstFactorSamples; i++)
            {
                for (int j = 0; j < SecondFactorSamples; j++)
                {
                    double u = cellMeans[i, j] - totalMean;
                    ssum += u * u;
                }
            }
            double cellSumOfSquares = ssum * Replications;


            // Step 6. Compute within-cells error sum of squares
            ssum = 0;
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - cellMeans[i, j];
                        ssum += u * u;
                    }
                }
            }
            double errorSumOfSquares = ssum;


            // Step 7. Compute factors sum of squares
            ssum = 0;
            for (int i = 0; i < aMean.Length; i++)
            {
                double u = aMean[i] - totalMean;
                ssum += u * u;
            }
            double aSumOfSquares = ssum * SecondFactorSamples * Replications;

            ssum = 0;
            for (int i = 0; i < bMean.Length; i++)
            {
                double u = bMean[i] - totalMean;
                ssum += u * u;
            }
            double bSumOfSquares = ssum * FirstFactorSamples * Replications;


            // Step 9. Compute interaction sum of squares
            double abSumOfSquares = cellSumOfSquares - aSumOfSquares - bSumOfSquares;

            // Step 10. Compute mean squares
            double aMeanSquares     = aSumOfSquares / aDegreesOfFreedom;
            double bMeanSquares     = bSumOfSquares / bDegreesOfFreedom;
            double abMeanSquares    = abSumOfSquares / abDegreesOfFreedom;
            double errorMeanSquares = errorSumOfSquares / errorDegreesOfFreedom;

            // Step 10. Create the F-Statistics
            FTest aSignificance, bSignificance, abSignificance;

            if (type == TwoWayAnovaModel.Fixed)
            {
                // Model 1: Factors A and B fixed
                aSignificance  = new FTest(aMeanSquares / abMeanSquares, aDegreesOfFreedom, abDegreesOfFreedom);
                bSignificance  = new FTest(bMeanSquares / abMeanSquares, bDegreesOfFreedom, abDegreesOfFreedom);
                abSignificance = new FTest(abMeanSquares / errorMeanSquares, abDegreesOfFreedom, errorDegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Mixed)
            {
                // Model 2: Factors A and B random
                aSignificance  = new FTest(aMeanSquares / errorMeanSquares, aDegreesOfFreedom, errorDegreesOfFreedom);
                bSignificance  = new FTest(bMeanSquares / errorMeanSquares, bDegreesOfFreedom, errorDegreesOfFreedom);
                abSignificance = new FTest(abMeanSquares / errorMeanSquares, abDegreesOfFreedom, errorDegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Random)
            {
                // Model 3: Factor A fixed, factor B random
                aSignificance  = new FTest(aMeanSquares / abMeanSquares, aDegreesOfFreedom, abDegreesOfFreedom);
                bSignificance  = new FTest(bMeanSquares / errorMeanSquares, bDegreesOfFreedom, errorDegreesOfFreedom);
                abSignificance = new FTest(abMeanSquares / errorMeanSquares, abDegreesOfFreedom, errorDegreesOfFreedom);
            }
            else
            {
                throw new ArgumentException("Unhandled analysis type.", "type");
            }


            // Step 11. Create the ANOVA table and sources
            AnovaVariationSource cell  = new AnovaVariationSource(this, "Cells", cellSumOfSquares, cellDegreesOfFreedom);
            AnovaVariationSource a     = new AnovaVariationSource(this, "Factor A", aSumOfSquares, aDegreesOfFreedom, aMeanSquares, aSignificance);
            AnovaVariationSource b     = new AnovaVariationSource(this, "Factor B", bSumOfSquares, bDegreesOfFreedom, bMeanSquares, bSignificance);
            AnovaVariationSource ab    = new AnovaVariationSource(this, "Interaction AxB", abSumOfSquares, abDegreesOfFreedom, abMeanSquares, abSignificance);
            AnovaVariationSource error = new AnovaVariationSource(this, "Within-cells (error)", errorSumOfSquares, errorDegreesOfFreedom, errorMeanSquares);
            AnovaVariationSource total = new AnovaVariationSource(this, "Total", totalSumOfSquares, totalDegreesOfFreedom);

            this.Sources = new TwoWayAnovaVariationSources()
            {
                Cells       = cell,
                FactorA     = a,
                FactorB     = b,
                Interaction = ab,
                Error       = error,
                Total       = total
            };

            this.Table = new AnovaSourceCollection(cell, a, b, ab, error, total);
        }
Esempio n. 2
0
        private void initialize(double[][][] samples, TwoWayAnovaModel type)
        {
            // References:
            // -  http://www.smi.hst.aau.dk/~cdahl/BiostatPhD/ANOVA.pdf

            ModelType    = type;
            Observations = FirstFactorSamples * SecondFactorSamples * Replications;


            // Step 0. Initialize variables
            AnovaVariationSource cell  = new AnovaVariationSource(this, "Cells");
            AnovaVariationSource a     = new AnovaVariationSource(this, "Factor A");
            AnovaVariationSource b     = new AnovaVariationSource(this, "Factor B");
            AnovaVariationSource ab    = new AnovaVariationSource(this, "Interaction AxB");
            AnovaVariationSource error = new AnovaVariationSource(this, "Within-cells (error)");
            AnovaVariationSource total = new AnovaVariationSource(this, "Total");


            // Step 1. Initialize all degrees of freedom
            cell.DegreesOfFreedom  = FirstFactorSamples * SecondFactorSamples - 1;
            a.DegreesOfFreedom     = FirstFactorSamples - 1;
            b.DegreesOfFreedom     = SecondFactorSamples - 1;
            ab.DegreesOfFreedom    = cell.DegreesOfFreedom - a.DegreesOfFreedom - b.DegreesOfFreedom;
            error.DegreesOfFreedom = FirstFactorSamples * SecondFactorSamples * (Replications - 1);
            total.DegreesOfFreedom = Observations - 1;


            // Step 1. Calculate cell means
            cellMeans = new double[FirstFactorSamples, SecondFactorSamples];

            double sum = 0;

            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    sum += cellMeans[i, j] = Statistics.Tools.Mean(samples[i][j]);
                }
            }


            // Step 2. Calculate the total mean (grand mean)
            totalMean = sum / (FirstFactorSamples * SecondFactorSamples);


            // Step 3. Calculate factor means
            aMean = new double[FirstFactorSamples];
            for (int i = 0; i < samples.Length; i++)
            {
                sum = 0;
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        sum += samples[i][j][k];
                    }
                }

                aMean[i] = sum / (SecondFactorSamples * Replications);
            }

            bMean = new double[SecondFactorSamples];
            for (int j = 0; j < samples[0].Length; j++)
            {
                sum = 0;
                for (int i = 0; i < samples.Length; i++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        sum += samples[i][j][k];
                    }
                }

                bMean[j] = sum / (FirstFactorSamples * Replications);
            }


            // Step 4. Calculate total sum of squares
            double ssum = 0;

            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - totalMean;
                        ssum += u * u;
                    }
                }
            }
            total.SumOfSquares = ssum;


            // Step 5. Calculate the cell sum of squares
            ssum = 0;
            for (int i = 0; i < FirstFactorSamples; i++)
            {
                for (int j = 0; j < SecondFactorSamples; j++)
                {
                    double u = cellMeans[i, j] - totalMean;
                    ssum += u * u;
                }
            }
            cell.SumOfSquares = ssum * Replications;


            // Step 6. Compute within-cells error sum of squares
            ssum = 0;
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - cellMeans[i, j];
                        ssum += u * u;
                    }
                }
            }
            error.SumOfSquares = ssum;


            // Step 7. Compute factors sum of squares
            ssum = 0;
            for (int i = 0; i < aMean.Length; i++)
            {
                double u = aMean[i] - totalMean;
                ssum += u * u;
            }
            a.SumOfSquares = ssum * SecondFactorSamples * Replications;

            ssum = 0;
            for (int i = 0; i < bMean.Length; i++)
            {
                double u = bMean[i] - totalMean;
                ssum += u * u;
            }
            b.SumOfSquares = ssum * FirstFactorSamples * Replications;


            // Step 9. Compute interaction sum of squares
            ab.SumOfSquares = cell.SumOfSquares - a.SumOfSquares - b.SumOfSquares;


            // Step 10. Create the F-Statistics
            if (type == TwoWayAnovaModel.Fixed)
            {
                // Model 1: Factors A and B fixed
                a.Significance  = new FTest(a.MeanSquares / ab.MeanSquares, a.DegreesOfFreedom, ab.DegreesOfFreedom);
                b.Significance  = new FTest(b.MeanSquares / ab.MeanSquares, b.DegreesOfFreedom, ab.DegreesOfFreedom);
                ab.Significance = new FTest(ab.MeanSquares / error.MeanSquares, ab.DegreesOfFreedom, error.DegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Mixed)
            {
                // Model 2: Factors A and B random
                a.Significance  = new FTest(a.MeanSquares / error.MeanSquares, a.DegreesOfFreedom, error.DegreesOfFreedom);
                b.Significance  = new FTest(b.MeanSquares / error.MeanSquares, b.DegreesOfFreedom, error.DegreesOfFreedom);
                ab.Significance = new FTest(ab.MeanSquares / error.MeanSquares, ab.DegreesOfFreedom, error.DegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Random)
            {
                // Model 3: Factor A fixed, factor B random
                a.Significance  = new FTest(a.MeanSquares / ab.MeanSquares, a.DegreesOfFreedom, ab.DegreesOfFreedom);
                b.Significance  = new FTest(b.MeanSquares / error.MeanSquares, b.DegreesOfFreedom, error.DegreesOfFreedom);
                ab.Significance = new FTest(ab.MeanSquares / error.MeanSquares, ab.DegreesOfFreedom, error.DegreesOfFreedom);
            }


            // Step 10. Create the ANOVA table and sources
            this.Sources = new TwoWayAnovaVariationSources()
            {
                Cells       = cell,
                FactorA     = a,
                FactorB     = b,
                Interaction = ab,
                Error       = error,
                Total       = total
            };

            this.Table = new AnovaSourceCollection(cell, a, b, ab, error, total);
        }
Esempio n. 3
0
        private void initialize(double[][][] samples, TwoWayAnovaModel type)
        {
            // References:
            // -  http://www.smi.hst.aau.dk/~cdahl/BiostatPhD/ANOVA.pdf

            ModelType = type;
            Observations = FirstFactorSamples * SecondFactorSamples * Replications;


            // Step 1. Initialize all degrees of freedom
            int cellDegreesOfFreedom = FirstFactorSamples * SecondFactorSamples - 1;
            int aDegreesOfFreedom = FirstFactorSamples - 1;
            int bDegreesOfFreedom = SecondFactorSamples - 1;
            int abDegreesOfFreedom = cellDegreesOfFreedom - aDegreesOfFreedom - bDegreesOfFreedom;
            int errorDegreesOfFreedom = FirstFactorSamples * SecondFactorSamples * (Replications - 1);
            int totalDegreesOfFreedom = Observations - 1;


            // Step 1. Calculate cell means
            cellMeans = new double[FirstFactorSamples, SecondFactorSamples];

            double sum = 0;
            for (int i = 0; i < samples.Length; i++)
                for (int j = 0; j < samples[i].Length; j++)
                    sum += cellMeans[i, j] = Measures.Mean(samples[i][j]);


            // Step 2. Calculate the total mean (grand mean)
            totalMean = sum / (FirstFactorSamples * SecondFactorSamples);


            // Step 3. Calculate factor means
            aMean = new double[FirstFactorSamples];
            for (int i = 0; i < samples.Length; i++)
            {
                sum = 0;
                for (int j = 0; j < samples[i].Length; j++)
                    for (int k = 0; k < samples[i][j].Length; k++)
                        sum += samples[i][j][k];

                aMean[i] = sum / (SecondFactorSamples * Replications);
            }

            bMean = new double[SecondFactorSamples];
            for (int j = 0; j < samples[0].Length; j++)
            {
                sum = 0;
                for (int i = 0; i < samples.Length; i++)
                    for (int k = 0; k < samples[i][j].Length; k++)
                        sum += samples[i][j][k];

                bMean[j] = sum / (FirstFactorSamples * Replications);
            }


            // Step 4. Calculate total sum of squares
            double ssum = 0;
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - totalMean;
                        ssum += u * u;
                    }
                }
            }
            double totalSumOfSquares = ssum;


            // Step 5. Calculate the cell sum of squares
            ssum = 0;
            for (int i = 0; i < FirstFactorSamples; i++)
            {
                for (int j = 0; j < SecondFactorSamples; j++)
                {
                    double u = cellMeans[i, j] - totalMean;
                    ssum += u * u;
                }
            }
            double cellSumOfSquares = ssum * Replications;


            // Step 6. Compute within-cells error sum of squares
            ssum = 0;
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - cellMeans[i, j];
                        ssum += u * u;
                    }
                }
            }
            double errorSumOfSquares = ssum;


            // Step 7. Compute factors sum of squares
            ssum = 0;
            for (int i = 0; i < aMean.Length; i++)
            {
                double u = aMean[i] - totalMean;
                ssum += u * u;
            }
            double aSumOfSquares = ssum * SecondFactorSamples * Replications;

            ssum = 0;
            for (int i = 0; i < bMean.Length; i++)
            {
                double u = bMean[i] - totalMean;
                ssum += u * u;
            }
            double bSumOfSquares = ssum * FirstFactorSamples * Replications;


            // Step 9. Compute interaction sum of squares
            double abSumOfSquares = cellSumOfSquares - aSumOfSquares - bSumOfSquares;

            // Step 10. Compute mean squares
            double aMeanSquares = aSumOfSquares / aDegreesOfFreedom;
            double bMeanSquares = bSumOfSquares / bDegreesOfFreedom;
            double abMeanSquares = abSumOfSquares / abDegreesOfFreedom;
            double errorMeanSquares = errorSumOfSquares / errorDegreesOfFreedom;

            // Step 10. Create the F-Statistics
            FTest aSignificance, bSignificance, abSignificance;

            if (type == TwoWayAnovaModel.Fixed)
            {
                // Model 1: Factors A and B fixed
                aSignificance = new FTest(aMeanSquares / abMeanSquares, aDegreesOfFreedom, abDegreesOfFreedom);
                bSignificance = new FTest(bMeanSquares / abMeanSquares, bDegreesOfFreedom, abDegreesOfFreedom);
                abSignificance = new FTest(abMeanSquares / errorMeanSquares, abDegreesOfFreedom, errorDegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Mixed)
            {
                // Model 2: Factors A and B random
                aSignificance = new FTest(aMeanSquares / errorMeanSquares, aDegreesOfFreedom, errorDegreesOfFreedom);
                bSignificance = new FTest(bMeanSquares / errorMeanSquares, bDegreesOfFreedom, errorDegreesOfFreedom);
                abSignificance = new FTest(abMeanSquares / errorMeanSquares, abDegreesOfFreedom, errorDegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Random)
            {
                // Model 3: Factor A fixed, factor B random
                aSignificance = new FTest(aMeanSquares / abMeanSquares, aDegreesOfFreedom, abDegreesOfFreedom);
                bSignificance = new FTest(bMeanSquares / errorMeanSquares, bDegreesOfFreedom, errorDegreesOfFreedom);
                abSignificance = new FTest(abMeanSquares / errorMeanSquares, abDegreesOfFreedom, errorDegreesOfFreedom);
            }
            else throw new ArgumentException("Unhandled analysis type.","type");


            // Step 11. Create the ANOVA table and sources
            AnovaVariationSource cell  = new AnovaVariationSource(this, "Cells", cellSumOfSquares, cellDegreesOfFreedom);
            AnovaVariationSource a     = new AnovaVariationSource(this, "Factor A", aSumOfSquares, aDegreesOfFreedom, aMeanSquares, aSignificance);
            AnovaVariationSource b     = new AnovaVariationSource(this, "Factor B", bSumOfSquares, bDegreesOfFreedom, bMeanSquares, bSignificance);
            AnovaVariationSource ab    = new AnovaVariationSource(this, "Interaction AxB", abSumOfSquares, abDegreesOfFreedom, abMeanSquares, abSignificance);
            AnovaVariationSource error = new AnovaVariationSource(this, "Within-cells (error)", errorSumOfSquares, errorDegreesOfFreedom, errorMeanSquares);
            AnovaVariationSource total = new AnovaVariationSource(this, "Total", totalSumOfSquares, totalDegreesOfFreedom);

            this.Sources = new TwoWayAnovaVariationSources()
            {
                Cells = cell,
                FactorA = a,
                FactorB = b,
                Interaction = ab,
                Error = error,
                Total = total
            };

            this.Table = new AnovaSourceCollection(cell, a, b, ab, error, total);
        }
Esempio n. 4
0
        private void initialize(double[][][] samples, TwoWayAnovaModel type)
        {
            // References:
            // -  http://www.smi.hst.aau.dk/~cdahl/BiostatPhD/ANOVA.pdf

            ModelType = type;
            Observations = FirstFactorSamples * SecondFactorSamples * Replications;


            // Step 0. Initialize variables
            AnovaVariationSource cell = new AnovaVariationSource(this, "Cells");
            AnovaVariationSource a = new AnovaVariationSource(this, "Factor A");
            AnovaVariationSource b = new AnovaVariationSource(this, "Factor B");
            AnovaVariationSource ab = new AnovaVariationSource(this, "Interaction AxB");
            AnovaVariationSource error = new AnovaVariationSource(this, "Within-cells (error)");
            AnovaVariationSource total = new AnovaVariationSource(this, "Total");


            // Step 1. Initialize all degrees of freedom
            cell.DegreesOfFreedom = FirstFactorSamples * SecondFactorSamples - 1;
            a.DegreesOfFreedom = FirstFactorSamples - 1;
            b.DegreesOfFreedom = SecondFactorSamples - 1;
            ab.DegreesOfFreedom = cell.DegreesOfFreedom - a.DegreesOfFreedom - b.DegreesOfFreedom;
            error.DegreesOfFreedom = FirstFactorSamples * SecondFactorSamples * (Replications - 1);
            total.DegreesOfFreedom = Observations - 1;


            // Step 1. Calculate cell means
            cellMeans = new double[FirstFactorSamples, SecondFactorSamples];

            double sum = 0;
            for (int i = 0; i < samples.Length; i++)
                for (int j = 0; j < samples[i].Length; j++)
                    sum += cellMeans[i, j] = Statistics.Tools.Mean(samples[i][j]);


            // Step 2. Calculate the total mean (grand mean)
            totalMean = sum / (FirstFactorSamples * SecondFactorSamples);


            // Step 3. Calculate factor means
            aMean = new double[FirstFactorSamples];
            for (int i = 0; i < samples.Length; i++)
            {
                sum = 0;
                for (int j = 0; j < samples[i].Length; j++)
                    for (int k = 0; k < samples[i][j].Length; k++)
                        sum += samples[i][j][k];

                aMean[i] = sum / (SecondFactorSamples * Replications);
            }

            bMean = new double[SecondFactorSamples];
            for (int j = 0; j < samples[0].Length; j++)
            {
                sum = 0;
                for (int i = 0; i < samples.Length; i++)
                    for (int k = 0; k < samples[i][j].Length; k++)
                        sum += samples[i][j][k];

                bMean[j] = sum / (FirstFactorSamples * Replications);
            }


            // Step 4. Calculate total sum of squares
            double ssum = 0;
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - totalMean;
                        ssum += u * u;
                    }
                }
            }
            total.SumOfSquares = ssum;


            // Step 5. Calculate the cell sum of squares
            ssum = 0;
            for (int i = 0; i < FirstFactorSamples; i++)
            {
                for (int j = 0; j < SecondFactorSamples; j++)
                {
                    double u = cellMeans[i, j] - totalMean;
                    ssum += u * u;
                }
            }
            cell.SumOfSquares = ssum * Replications;


            // Step 6. Compute within-cells error sum of squares
            ssum = 0;
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < samples[i].Length; j++)
                {
                    for (int k = 0; k < samples[i][j].Length; k++)
                    {
                        double u = samples[i][j][k] - cellMeans[i, j];
                        ssum += u * u;
                    }
                }
            }
            error.SumOfSquares = ssum;


            // Step 7. Compute factors sum of squares
            ssum = 0;
            for (int i = 0; i < aMean.Length; i++)
            {
                double u = aMean[i] - totalMean;
                ssum += u * u;
            }
            a.SumOfSquares = ssum * SecondFactorSamples * Replications;

            ssum = 0;
            for (int i = 0; i < bMean.Length; i++)
            {
                double u = bMean[i] - totalMean;
                ssum += u * u;
            }
            b.SumOfSquares = ssum * FirstFactorSamples * Replications;


            // Step 9. Compute interaction sum of squares
            ab.SumOfSquares = cell.SumOfSquares - a.SumOfSquares - b.SumOfSquares;


            // Step 10. Create the F-Statistics
            if (type == TwoWayAnovaModel.Fixed)
            {
                // Model 1: Factors A and B fixed
                a.Significance = new FTest(a.MeanSquares / ab.MeanSquares, a.DegreesOfFreedom, ab.DegreesOfFreedom);
                b.Significance = new FTest(b.MeanSquares / ab.MeanSquares, b.DegreesOfFreedom, ab.DegreesOfFreedom);
                ab.Significance = new FTest(ab.MeanSquares / error.MeanSquares, ab.DegreesOfFreedom, error.DegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Mixed)
            {
                // Model 2: Factors A and B random
                a.Significance = new FTest(a.MeanSquares / error.MeanSquares, a.DegreesOfFreedom, error.DegreesOfFreedom);
                b.Significance = new FTest(b.MeanSquares / error.MeanSquares, b.DegreesOfFreedom, error.DegreesOfFreedom);
                ab.Significance = new FTest(ab.MeanSquares / error.MeanSquares, ab.DegreesOfFreedom, error.DegreesOfFreedom);
            }
            else if (type == TwoWayAnovaModel.Random)
            {
                // Model 3: Factor A fixed, factor B random
                a.Significance = new FTest(a.MeanSquares / ab.MeanSquares, a.DegreesOfFreedom, ab.DegreesOfFreedom);
                b.Significance = new FTest(b.MeanSquares / error.MeanSquares, b.DegreesOfFreedom, error.DegreesOfFreedom);
                ab.Significance = new FTest(ab.MeanSquares / error.MeanSquares, ab.DegreesOfFreedom, error.DegreesOfFreedom);
            }


            // Step 10. Create the ANOVA table and sources
            this.Sources = new TwoWayAnovaVariationSources()
            {
                Cells = cell,
                FactorA = a,
                FactorB = b,
                Interaction = ab,
                Error = error,
                Total = total
            };

            this.Table = new AnovaSourceCollection(cell, a, b, ab, error, total);
        }