Inheritance: GeneralConfusionMatrix
        public void WeightedConfusionMatrixConstructorTest()
        {
            // Sample data from Fleiss, Cohen and Everitt (1968), Large sample standard errors
            // of kappa and weighted kappa. Psychological Bulletin, Vol. 72, No. 5, 323-327

            double[,] matrix =
            {
                { 0.53, 0.05, 0.02 },
                { 0.11, 0.14, 0.05 },
                { 0.01, 0.06, 0.03 },
            };

            double[,] weights =
            {
                { 1.0000, 0.0000, 0.4444 },
                { 0.0000, 1.0000, 0.6667 },
                { 0.4444, 0.6667, 1.0000 },
            };

            WeightedConfusionMatrix target = new WeightedConfusionMatrix(matrix, weights, samples: 200);


            Assert.AreEqual(0.787, target.WeightedOverallAgreement, 1e-3);
            Assert.AreEqual(0.567, target.WeightedChanceAgreement, 1e-3);
            Assert.AreEqual(0.508, target.WeightedKappa, 1e-3);

            Assert.AreEqual(0.00324823, target.WeightedVariance, 1e-5);
            Assert.AreEqual(0.004270, target.WeightedVarianceUnderNull, 1e-3);
        }
Esempio n. 2
0
        /// <summary>
        ///   Computes the asymptotic variance for Fleiss's Kappa variance using the formulae
        ///   by (Fleiss et al, 1969). If <paramref name="nullHypothesis"/> is set to true, the
        ///   method will return the variance under the null hypothesis.
        /// </summary>
        /// 
        /// <param name="matrix">A <see cref="GeneralConfusionMatrix"/> representing the ratings.</param>
        /// <param name="stdDev">Kappa's standard deviation.</param>
        /// <param name="nullHypothesis">True to compute Kappa's variance when the null hypothesis
        /// is true (i.e. that the underlying kappa is zer). False otherwise. Default is false.</param>
        /// 
        /// <returns>Kappa's variance.</returns>
        /// 
        public static double AsymptoticKappaVariance(WeightedConfusionMatrix matrix, out double stdDev,
            bool nullHypothesis = false)
        {
            double n = matrix.Samples;
            double k = matrix.Kappa;

            double[,] p = matrix.ProportionMatrix;
            double[,] w = matrix.Weights;

            double[] pj = matrix.ColumnProportions;
            double[] pi = matrix.RowProportions;
            double[] wi = matrix.WeightedColumnProportions;
            double[] wj = matrix.WeightedRowProportions;

            double Po = matrix.WeightedOverallAgreement;
            double Pc = matrix.WeightedChanceAgreement;

            double variance;


            if (!nullHypothesis)
            {
                // References: Statistical Methods for Rates and Proportions, pg 610.
                double a = 0;
                for (int i = 0; i < pi.Length; i++)
                {
                    for (int j = 0; j < pj.Length; j++)
                    {
                        double t = w[i, j] * (1.0 - Pc) - (wi[i] + wj[j]) * (1.0 - Po);
                        a += p[i, j] * (t * t);
                    }
                }

                double b = (Po * Pc - 2 * Pc + Po) * (Po * Pc - 2 * Pc + Po);
                double c = (1.0 - Pc) * (1.0 - Pc);

                stdDev = (a - b) / (c * Math.Sqrt(n));
                variance = (a - b) / (c * c * n);
            }
            else
            {
                double a = 0;
                for (int i = 0; i < pi.Length; i++)
                {
                    for (int j = 0; j < pj.Length; j++)
                    {
                        double t = w[i, j] - (wj[i] + wi[j]);
                        a += pj[i] * pi[j] * t * t;
                    }
                }

                double b = (Pc * Pc);
                double c = (1.0 - Pc);

                stdDev = (a - b) / (c * Math.Sqrt(n));
                variance = (a - b) / (c * c *n );
            }


            return variance;
        }
Esempio n. 3
0
 /// <summary>
 ///   Creates a new Kappa test.
 /// </summary>
 /// 
 /// <param name="matrix">The contingency table to test.</param>
 /// <param name="alternate">The alternative hypothesis (research hypothesis) to test. If the
 /// hypothesized kappa is left unspecified, a one-tailed test will be used. Otherwise, the 
 /// default is to use a two-sided test.</param>
 /// <param name="hypothesizedWeightedKappa">The hypothesized value for the Kappa statistic. If the test
 /// is being used to assert independency between two raters (i.e. testing the null hypothesis
 /// that the underlying Kappa is zero), then the <see cref="AsymptoticKappaVariance(GeneralConfusionMatrix)">
 /// standard error will be computed with the null hypothesis parameter set to true</see>.</param>
 /// 
 public KappaTest(WeightedConfusionMatrix matrix, double hypothesizedWeightedKappa,
     OneSampleHypothesis alternate = OneSampleHypothesis.ValueIsDifferentFromHypothesis)
 {
     if (hypothesizedWeightedKappa == 0)
     {
         // Use the null hypothesis variance
         Compute(matrix.WeightedKappa, hypothesizedWeightedKappa, matrix.WeightedStandardErrorUnderNull, alternate);
         Variance = matrix.WeightedVarianceUnderNull;
     }
     else
     {
         // Use the default variance
         Compute(matrix.WeightedKappa, hypothesizedWeightedKappa, matrix.WeightedStandardError, alternate);
         Variance = matrix.WeightedVariance;
     }
 }
        public void WeightedConfusionMatrixConstructorTest2()
        {
            double[,] matrix =
            {
                { 0.53, 0.05, 0.02 },
                { 0.11, 0.14, 0.05 },
                { 0.01, 0.06, 0.03 },
            };

            double[,] weights =
            {
                { 1.00, 0.50, 0.44 },
                { 0.90, 1.00, 0.56 },
                { 0.75, 0.66, 1.00 },
            };

            WeightedConfusionMatrix target = new WeightedConfusionMatrix(matrix, 
                weights, samples: 200);


            Assert.AreEqual(0.4453478, target.WeightedKappa, 1e-5);
            Assert.AreEqual(0.005535633, target.WeightedVariance, 1e-5);
        }