Esempio n. 1
0
        /// <summary>
        /// Calback from the training in order to inform user about trining progress
        /// </summary>
        /// <param name="trParams"></param>
        /// <param name="trainer"></param>
        /// <param name="network"></param>
        /// <param name="mbs"></param>
        /// <param name="epoch"></param>
        /// <param name="progress"></param>
        /// <param name="device"></param>
        /// <returns></returns>
        protected virtual ProgressData progressTraining(TrainingParameters trParams, Trainer trainer,
                                                        Function network, MinibatchSourceEx mbs, int epoch, TrainingProgress progress, DeviceDescriptor device)
        {
            //calculate average training loss and evaluation
            var mbAvgLoss = trainer.PreviousMinibatchLossAverage();
            var mbAvgEval = trainer.PreviousMinibatchEvaluationAverage();
            var vars      = InputVariables.Union(OutputVariables).ToList();
            //get training dataset
            double trainEval = mbAvgEval;

            //sometimes when the data set is huge validation model against
            // full training dataset could take time, so we can skip it by setting parameter 'FullTrainingSetEval'
            if (trParams.FullTrainingSetEval)
            {
                if (m_TrainData == null || m_TrainData.Values.Any(x => x.data.IsValid == false))
                {
                    using (var streamDatat = MinibatchSourceEx.GetFullBatch(mbs.Type, mbs.TrainingDataFile, mbs.StreamConfigurations, device))
                    {
                        //get full training dataset
                        m_TrainData = MinibatchSourceEx.ToMinibatchData(streamDatat, vars, mbs.Type);
                    }
                    //perform evaluation of the current model on whole training dataset
                    trainEval = trainer.TestMinibatch(m_TrainData, device);
                }
            }

            string bestModelPath = m_bestModelPath;
            double validEval     = 0;

            //in case validation data set is empty don't perform test-minibatch
            if (!string.IsNullOrEmpty(mbs.ValidationDataFile))
            {
                if (m_ValidationData == null || m_ValidationData.Values.Any(x => x.data.IsValid == false))
                {
                    //get validation dataset
                    using (var streamData = MinibatchSourceEx.GetFullBatch(mbs.Type, mbs.ValidationDataFile, mbs.StreamConfigurations, device))
                    {
                        //store validation data for future testing
                        m_ValidationData = MinibatchSourceEx.ToMinibatchData(streamData, vars, mbs.Type);
                    }
                }
                //perform evaluation of the current model with validation dataset
                validEval = trainer.TestMinibatch(m_ValidationData, device);
            }

            //here we should decide if the current model worth to be saved into temp location
            // depending of the Evaluation function which sometimes can be better if it is greater that previous (e.g. ClassificationAccuracy)
            if (isBetterThanPrevious(trainEval, validEval, StatMetrics.IsGoalToMinimize(trainer.EvaluationFunction())) && trParams.SaveModelWhileTraining)
            {
                //save model
                var strFilePath = $"{trParams.ModelTempLocation}\\model_at_{epoch}of{trParams.Epochs}_epochs_TimeSpan_{DateTime.Now.Ticks}";
                if (!Directory.Exists(trParams.ModelTempLocation))
                {
                    Directory.CreateDirectory(trParams.ModelTempLocation);
                }

                //save temp model
                network.Save(strFilePath);

                //set training and validation evaluation to previous state
                m_PrevTrainingEval   = trainEval;
                m_PrevValidationEval = validEval;
                bestModelPath        = strFilePath;

                var tpl = Tuple.Create <double, double, string>(trainEval, validEval, strFilePath);
                m_ModelEvaluations.Add(tpl);
            }


            m_bestModelPath = bestModelPath;

            //create progressData object
            var prData = new ProgressData();

            prData.EpochTotal           = trParams.Epochs;
            prData.EpochCurrent         = epoch;
            prData.EvaluationFunName    = trainer.EvaluationFunction().Name;
            prData.TrainEval            = trainEval;
            prData.ValidationEval       = validEval;
            prData.MinibatchAverageEval = mbAvgEval;
            prData.MinibatchAverageLoss = mbAvgLoss;

            //the progress is only reported if satisfied the following condition
            if (progress != null && (epoch % trParams.ProgressFrequency == 0 || epoch == 1 || epoch == trParams.Epochs))
            {
                //add info to the history
                m_trainingHistory.Add(new Tuple <int, float, float, float, float>(epoch, (float)mbAvgLoss, (float)mbAvgEval,
                                                                                  (float)trainEval, (float)validEval));

                //send progress
                progress(prData);
                //
                //Console.WriteLine($"Epoch={epoch} of {trParams.Epochs} processed.");
            }

            //return progress data
            return(prData);
        }
Esempio n. 2
0
        /// <summary>
        /// Main method for training
        /// </summary>
        /// <param name="trainer"></param>
        /// <param name="network"></param>
        /// <param name="trParams"></param>
        /// <param name="miniBatchSource"></param>
        /// <param name="device"></param>
        /// <param name="token"></param>
        /// <param name="progress"></param>
        /// <param name="modelCheckPoint"></param>
        /// <returns></returns>
        public override TrainResult Train(Trainer trainer, Function network, TrainingParameters trParams,
                                          MinibatchSourceEx miniBatchSource, DeviceDescriptor device, CancellationToken token, TrainingProgress progress, string modelCheckPoint, string historyPath)
        {
            try
            {
                //create trainer result.
                // the variable indicate how training process is ended
                // completed, stopped, crashed,
                var trainResult = new TrainResult();
                var historyFile = "";
                //create training process evaluation collection
                //for each iteration it is stored evaluationValue for training, and validation set with the model
                m_ModelEvaluations = new List <Tuple <double, double, string> >();

                //check what is the optimization (Minimization (error) or maximization (accuracy))
                bool isMinimize = StatMetrics.IsGoalToMinimize(trainer.EvaluationFunction());

                //setup first iteration
                if (m_trainingHistory == null)
                {
                    m_trainingHistory = new List <Tuple <int, float, float, float, float> >();
                }
                //in case of continuation of training iteration must start with the last of path previous training process
                int epoch = (m_trainingHistory.Count > 0)? m_trainingHistory.Last().Item1 + 1:1;

                //define progressData
                ProgressData prData = null;

                //define helper variable collection
                var vars = InputVariables.Union(OutputVariables).ToList();

                //training process
                while (true)
                {
                    //get mini batch data
                    var args = miniBatchSource.GetNextMinibatch(trParams.BatchSize, device);

                    var arguments = MinibatchSourceEx.ToMinibatchData(args, vars, miniBatchSource.Type);
                    //
                    trainer.TrainMinibatch(arguments, device);

                    //make progress
                    if (args.Any(a => a.Value.sweepEnd))
                    {
                        //check the progress of the training process
                        prData = progressTraining(trParams, trainer, network, miniBatchSource, epoch, progress, device);
                        //check if training process ends
                        if (epoch >= trParams.Epochs)
                        {
                            //save training checkpoint state
                            if (!string.IsNullOrEmpty(modelCheckPoint))
                            {
                                trainer.SaveCheckpoint(modelCheckPoint);
                            }

                            //save training history
                            if (!string.IsNullOrEmpty(historyPath))
                            {
                                string header = $"{trainer.LossFunction().Name};{trainer.EvaluationFunction().Name};";
                                saveTrainingHistory(m_trainingHistory, header, historyPath);
                            }

                            //save best or last trained model and send report last time before trainer completes
                            var bestModelPath = saveBestModel(trParams, trainer.Model(), epoch, isMinimize);
                            //
                            if (progress != null)
                            {
                                progress(prData);
                            }
                            //
                            trainResult.Iteration           = epoch;
                            trainResult.ProcessState        = ProcessState.Compleated;
                            trainResult.BestModelFile       = bestModelPath;
                            trainResult.TrainingHistoryFile = historyFile;
                            break;
                        }
                        else
                        {
                            epoch++;
                        }
                    }
                    //stop in case user request it
                    if (token.IsCancellationRequested)
                    {
                        if (!string.IsNullOrEmpty(modelCheckPoint))
                        {
                            trainer.SaveCheckpoint(modelCheckPoint);
                        }

                        //save training history
                        if (!string.IsNullOrEmpty(historyPath))
                        {
                            string header = $"{trainer.LossFunction().Name};{trainer.EvaluationFunction().Name};";
                            saveTrainingHistory(m_trainingHistory, header, historyPath);
                        }

                        //sometime stopping training process can be before first epoch passed so make a incomplete progress
                        if (prData == null)//check the progress of the training process
                        {
                            prData = progressTraining(trParams, trainer, network, miniBatchSource, epoch, progress, device);
                        }

                        //save best or last trained model and send report last time before trainer terminates
                        var bestModelPath = saveBestModel(trParams, trainer.Model(), epoch, isMinimize);
                        //
                        if (progress != null)
                        {
                            progress(prData);
                        }

                        //setup training result
                        trainResult.Iteration           = prData.EpochCurrent;
                        trainResult.ProcessState        = ProcessState.Stopped;
                        trainResult.BestModelFile       = bestModelPath;
                        trainResult.TrainingHistoryFile = historyFile;
                        break;
                    }
                }

                return(trainResult);
            }
            catch (Exception ex)
            {
                var ee = ex;
                throw;
            }
            finally
            {
            }
        }