Esempio n. 1
0
        /*
         * Método de aprendizado da Rede
         */
        public void Learn(DataSet trainingSet)
        {
            if (trainingSet.GetOutputSize() != 0 || trainingSet.GetInputSize() != this.inputLayerSize)
            {
                throw new Exception("Incorrect data format!");
            }
            else
            {
                List <DataSetObject> dataset = trainingSet.GetList();

                //Para cada iteração
                for (int itN = 0; itN < iterationNumber; itN++)
                {
                    //Para cada entrada
                    for (int inputN = 0; inputN < trainingSet.Length(); inputN++)
                    {
                        //Calcula neurônio vencedor
                        KohonenNeuron neuro = CalculateWinnerNeuron(dataset[inputN]);

                        //Atualiza pesos do neurônio vencedor e de seus vizinhos
                        List <KohonenNeuron> winners = GetNeighbors(neuro);
                        for (int x = 0; x < winners.Count; x++)
                        {
                            winners[x].UpdateWeights(dataset[inputN], learningRate);
                        }
                    }
                }
            }
        }
Esempio n. 2
0
        /*
         * Dado um padrão de entrada, calcula o neurônio vencedor
         */
        private KohonenNeuron CalculateWinnerNeuron(DataSetObject pattern)
        {
            double        smallestDist = -1;
            KohonenNeuron winner       = new KohonenNeuron(inputLayerSize);

            //Para cada neurônio da camada competitiva
            for (int i = 0; i < competitiveNeuronLength; i++)
            {
                for (int j = 0; j < competitiveNeuronLength; j++)
                {
                    KohonenNeuron neuron = competitiveLayer[i, j];

                    //Calcula a distância euclidiana
                    double dist = neuron.GetEuclideanDistance(pattern);
                    //Primeiro neurônio sempre é o primeiro vencedor
                    if (smallestDist == -1)
                    {
                        smallestDist = dist;
                        winner       = neuron;
                    }
                    //Se a distância for a menor que a distância do último vencedor, temos um novo vencedor
                    if (dist < smallestDist)
                    {
                        smallestDist = dist;
                        winner       = neuron;
                    }
                }
            }

            return(winner);
        }
Esempio n. 3
0
 private int[] FindIndex(KohonenNeuron neuron)
 {
     int[] IJ = new int[2];
     for (int i = 0; i < competitiveLayer.GetLength(0); i++)
     {
         for (int j = 0; j < competitiveLayer.GetLength(1); j++)
         {
             if (neuron == competitiveLayer[i, j])
             {
                 IJ[0] = i;
                 IJ[1] = j;
             }
         }
     }
     return(IJ);
 }
Esempio n. 4
0
        private void BuildNewKohonen(int inputLayerSize, int competitiveNeuronLength, int maximumWeightRange)
        {
            this.maximumWeightRange = maximumWeightRange;
            iterationNumber         = 20 * inputLayerSize * competitiveNeuronLength;
            learningRate            = 0.2;
            neighborhoodRadius      = 1;

            this.inputLayerSize          = inputLayerSize;
            this.competitiveNeuronLength = competitiveNeuronLength;
            competitiveLayer             = new KohonenNeuron[competitiveNeuronLength, competitiveNeuronLength];
            for (int i = 0; i < competitiveNeuronLength; i++)
            {
                for (int j = 0; j < competitiveNeuronLength; j++)
                {
                    (competitiveLayer[i, j] = new KohonenNeuron(inputLayerSize, i, j)).RandomizeWeights(maximumWeightRange);
                }
            }
        }
Esempio n. 5
0
        /*
         * Retorna todos os neurônios no raio de vizinhança do vencedor
         */
        private List <KohonenNeuron> GetNeighbors(KohonenNeuron neuron)
        {
            List <KohonenNeuron> list = new List <KohonenNeuron>();

            int[] index = FindIndex(neuron);

            int X = index[0];
            int Y = index[1];

            for (int i = X - neighborhoodRadius; i <= X + neighborhoodRadius; i++)
            {
                for (int j = Y - neighborhoodRadius; j <= Y + neighborhoodRadius; j++)
                {
                    if (i < competitiveNeuronLength && i >= 0 && j < competitiveNeuronLength && j >= 0)
                    {
                        list.Add(competitiveLayer[i, j]);
                    }
                }
            }

            return(list);
        }