Esempio n. 1
0
        public override void buildClassifier(Instances instances)
        {
            // can classifier handle the data?
            getCapabilities().testWithFail(instances);

            // remove instances with missing class
            instances = new Instances(instances);
            instances.deleteWithMissingClass();

            double sum = 0;
            int cnt = 0;
            foreach (Instance instance in instances)
            {
                if (!instance.classIsMissing())
                {
                    sum += instance.value(idxAttribute);
                    cnt++;
                }
            }
            mean = sum / cnt;

            sum = 0;
            foreach (Instance instance in instances)
            {
                if (!instance.classIsMissing())
                {
                    sum += (instance.value(idxAttribute) - mean) * (instance.value(idxAttribute) - mean);
                }
            }
            sigma2 = sum / cnt;

            epsilon = SelectBestEpsilon(instances, mean, sigma2);
        }
Esempio n. 2
0
        ///            
        ///             <summary> * Generates the classifier.
        ///             * </summary>
        ///             * <param name="instances"> set of instances serving as training data  </param>
        ///             * <exception cref="Exception"> if the classifier has not been generated successfully </exception>
        ///             
        public override void buildClassifier(Instances instances)
        {
            // can classifier handle the data?
            getCapabilities().testWithFail(instances);

            // remove instances with missing class
            instances = new Instances(instances);
            instances.deleteWithMissingClass();

            double sumOfWeights = 0;

            WekaUtils.DebugAssert(instances.numClasses() == 3, "instance's numClasses should be 3.");
            m_counts = new double[instances.numClasses()];
            m_normalCounts = new double[instances.numClasses()];
            for (int i = 0; i < m_counts.Length; i++)
            {
                m_counts[i] = 0;
                m_normalCounts[i] = 0;
            }

            double c = m_tp / m_sl;
            foreach (Instance instance in instances)
            {
                int v = (int)instance.classValue();
                if (v == 2)
                {
                    m_counts[v] += instance.weight() * c;
                    sumOfWeights += instance.weight() * c;
                }
                else
                {
                    m_counts[v] += instance.weight();
                    sumOfWeights += instance.weight();
                }
            }

            double start = 0;
            for (int i = 0; i < m_counts.Length; ++i)
            {
                m_normalCounts[i] = (double)m_counts[i] / sumOfWeights + start;
                start = m_normalCounts[i];
            }
        }
Esempio n. 3
0
        ///            
        ///             <summary> * Generates the classifier.
        ///             * </summary>
        ///             * <param name="instances"> set of instances serving as training data  </param>
        ///             * <exception cref="Exception"> if the classifier has not been generated successfully </exception>
        ///             
        public override void buildClassifier(Instances instances)
        {
            // can classifier handle the data?
            getCapabilities().testWithFail(instances);

            // remove instances with missing class
            var trainInstances = new Instances(instances);
            trainInstances.deleteWithMissingClass();

            WekaUtils.DebugAssert(instances.numClasses() == 3, "instance's numClasses should be 3.");
            m_counts = new double[instances.numClasses()];
            for (int i = 0; i < m_counts.Length; i++)
            {
                m_counts[i] = 0;
            }

            //double c = m_tp / m_sl;
            foreach (Instance instance in instances)
            {
                int v = (int)instance.classValue();
                m_counts[v] += 1;
                sumOfWeights += 1;
            }
        }