Esempio n. 1
0
    static void B5()
    {
        WriteLine("\n Problem B5\n");

        int    n = 5;
        matrix A = rand_sym_mat(n);
        matrix B = A.copy();
        matrix C = A.copy();

        WriteLine($"Random symmetric matrix A with size {n}");
        WriteLine("We find all eigenvalues with cyclic routine");

        jcbi_cycl test_cycl = new jcbi_cycl(B);

        test_cycl.Eigvals.print("Eigenvalues found by cyclic routine, low to high");

        WriteLine("\nNow we use the value-by-value routine to calculate eigenvalues from last to first");
        WriteLine("We do this by changing the calculation of " +
                  "rotation angle theta to 0.5*Atan2(-Apq, App-Aqq)\n");

        bool      invert   = true;
        int       evalnum  = n;
        bool      vbv      = true;
        jcbi_cycl test_vbv = new jcbi_cycl(C, vbv, evalnum, invert);

        test_vbv.Eigvals.print("Eigenvalues value-by-value, in order of calculation");
    }
Esempio n. 2
0
    static void B2()
    {
        WriteLine("\n Problem B2\n");
        int    n = 8;
        matrix A = rand_sym_mat(n);
        matrix B = A.copy();

        WriteLine("Random symmetric matrix A with size {0}", n);
        WriteLine("Perform eigenvalue by eigenvalue calculation for first 4 values");
        int       evalnum    = 4;
        bool      val_by_val = true;
        jcbi_cycl test_vbv   = new jcbi_cycl(B, val_by_val, evalnum);

        Write("Found eigenvalues = ");
        for (int i = 0; i < evalnum; i++)
        {
            Write(" {0:g3} ", test_vbv.Eigvals[i]);
        }
        Write("\n");

        ((test_vbv.V).T * A * test_vbv.V - test_vbv.D).print("V.T*A*V - D = ", "{0,10:f6}");
        WriteLine("\n Total rotations used = {0}", test_vbv.Rotations);
        B.print("\n Matrix copy used, after value by value operations = ", "{0,10:f6}");

        matrix C = A.copy();

        WriteLine("\nSimilar calculation with cyclic sweeps");
        jcbi_cycl test_cycl = new jcbi_cycl(C);

        test_cycl.Eigvals.print("Found eigenvalues = ");
        (test_cycl.V.T * A * test_cycl.V - test_cycl.D).print("V.T*A*V - D = ", "{0,10:f6}");
        WriteLine("\n Total rotations used = {0}", test_cycl.Rotations);
        C.print("\n Matrix copy used, after cyclic sweeps = ", "{0,10:f6}");
    }
Esempio n. 3
0
public static void Main(){
// for(int n=2;n<50;n+=5){
	for(int n=2;n<50;n+=10){
	vector e=new vector(n);
	matrix V=new matrix(n,n);
	var rnd = new Random(1);
	matrix A = new matrix(n,n);
	for(int i=0;i<n;i++){
		for(int j=i;j<n;j++){
			A[i,j]=(rnd.NextDouble());  
			A[j,i]=A[i,j];
		}
	}
	matrix Alow=A.copy();
	matrix Ahigh=A.copy();
	matrix Vlow=V.copy();
	matrix Vhigh=V.copy();
	vector elow=e.copy();
	vector ehigh=e.copy();
	//for plotting:
	// matrix B=A.copy();
	
	var sweeps=jacobi.cyclic(A,e,V);
	// matrix VTAV = V.T*B*V;
	// VTAV.printfloat("Should be diagional:");
	var lowest=jacobi.lowest(Alow,elow,1,Vlow);		//only the one lowest eigenvalue
	// matrix VTAVlow = Vlow.T*B*Vlow;
	// VTAVlow.printfloat("Should be diagional:");
	var highest=jacobi.highest(Ahigh,ehigh,1,Vhigh);	//only the one highest eigenvalue
	// matrix VTAVhigh = Vhigh.T*B*Vhigh;
	// VTAVhigh.printfloat("Should be diagional:");
	WriteLine($"{n} {sweeps} {lowest} {highest}");
	}
}//Main
Esempio n. 4
0
    public static void Main()
    {
        //now test highest EV
        int    n    = 5;
        matrix A    = new matrix(n, n);
        matrix V    = new matrix(n, n);
        vector e    = new vector(n);
        var    rand = new Random(1);

        for (int i = 0; i < n; i++)
        {
            for (int j = i; j < n; j++)
            {
                A[i, j] = 2 * (rand.NextDouble() - 0.5);
                A[j, i] = A[i, j];
            }
        }

        //2 highest EV
        matrix AA2   = A.copy();
        string order = "high";
        int    count = jacobiB.jacobirow(AA2, e, 2, V, order);

        e.print("First 2 values should be highest EVs");

        //full diag
        matrix Vh     = new matrix(n, n);
        vector eh     = new vector(n);
        matrix AAh    = A.copy();
        int    counth = jacobiB.jacobirow(AAh, eh, n, Vh);

        eh.print("all eigenvalues");
    }
Esempio n. 5
0
    public static void Main()
    {
        WriteLine();
        WriteLine("Create a matrix and diagonalize it via the cyclic, value-by-value and" +
                  " classic method.");

        var rand = new Random();
        int n    = 5;

        // Create a random matrix
        matrix A = new matrix(n, n);

        for (int i = 0; i < n; i++)
        {
            A[i, i] = 2 - 4 * rand.NextDouble();
            for (int j = i + 1; j < n; j++)
            {
                A[i, j] = 2 - 3.32 * rand.NextDouble();
                A[j, i] = A[i, j];
            }
        }
        // Print the random matrix.
        WriteLine("\nSetting up a random symmetric matrix:");
        A.print();
        WriteLine();

        // Diagonalize it via the three different methods
        matrix Acopy   = A.copy();
        matrix AcopyII = A.copy();

        matrix V                = new matrix(n, n);
        vector e                = new vector(n);
        vector eRot             = new vector(n);
        vector eClassic         = new vector(n);
        int    sweeps           = jacobi.cycle(A, e, V);
        int    entries          = (n * n - n) / 2;
        int    rotations        = jacobi.findEigenvalue(Acopy, eRot, V, n, true);
        int    rotationsClassic = jacobi.classic(AcopyII, eClassic, V);

        WriteLine("The cyclic method used {0} operations", sweeps * entries);
        WriteLine("The value-by-value method used {0} operations", rotations);
        WriteLine("The classic method used {0} operations", rotationsClassic);

        WriteLine("\nAfter cyclic diagonalization the matrix looks like:");
        A.print();
        WriteLine("\nAfter value-by-value diagonalization the matrix looks like:");
        Acopy.print();
        WriteLine("\nAfter classic Jacobi diagonalization the matrix looks like:");
        AcopyII.print();

        Write("\n\n");
        WriteLine("The found eigenvalues are:");
        WriteLine("E(cyclic)\t\tE(val_by_val)\t\tE(classic)");
        for (int j = 0; j < n; j++)
        {
            WriteLine("{0}\t{1}\t{2}", e[j], eRot[j], eClassic[j]);
        }
    }
Esempio n. 6
0
    static void B4()
    {
        WriteLine("\n Problem B4\n");
        WriteLine("See PlotB4r.svg and PlotB4t.svg for results");
        int l = 50;        // max matrix size
        int k = 5;         // number of tries for each avg

        Stopwatch sw         = new Stopwatch();
        var       timewriter = new System.IO.StreamWriter("out.b4time.txt");
        var       rotwriter  = new System.IO.StreamWriter("out.b4rot.txt");

        vector tvbv = new vector(l);
        vector tcyc = new vector(l);
        vector rvbv = new vector(l);
        vector rcyc = new vector(l);

        for (int i = 0; i < l; i++)
        {
            tvbv[i] = 0;
            tcyc[i] = 0;
            rvbv[i] = 0;
            rcyc[i] = 0;
            for (int j = 0; j < k; j++)
            {
                matrix A = rand_sym_mat(i + 1);

                sw.Reset();
                matrix B       = A.copy();
                bool   vbv     = true;
                int    evalnum = l;
                sw.Start();
                jcbi_cycl test_vbv = new jcbi_cycl(B, vbv, evalnum);
                sw.Stop();
                tvbv[i] += sw.Elapsed.TotalMilliseconds;
                rvbv[i] += test_vbv.Rotations;

                matrix C = A.copy();
                sw.Reset();
                sw.Start();
                jcbi_cycl test_cyc = new jcbi_cycl(C);
                sw.Stop();
                tcyc[i] += sw.Elapsed.TotalMilliseconds;
                rcyc[i] += test_cyc.Rotations;
            }
            tvbv[i] = tvbv[i] / k;
            tcyc[i] = tcyc[i] / k;
            rvbv[i] = rvbv[i] / k;
            rcyc[i] = rcyc[i] / k;

            timewriter.WriteLine($"{i} {tvbv[i]} {tcyc[i]}");
            rotwriter.WriteLine($"{i} {rvbv[i]} {rcyc[i]}");
        }
        timewriter.Close();
        rotwriter.Close();
    }
Esempio n. 7
0
    public static void Main(string[] args)
    {
        int    n   = 5; //size of real symmetric matrix
        matrix A   = new matrix(n, n);
        var    rnd = new Random(1);

        for (int i = 0; i < n; i++)                                            /* Construction of a random vector */
        {
            for (int j = 0; j < n; j++)
            {
                A[i, j] = (rnd.NextDouble() * 10);
                A[j, i] = A[i, j];                                              /* We make sure that the matrix is symmetric */
            }
        }
        A.print("Random symmetric matrix, A:");
        matrix V = new matrix(n, n);
        vector e = new vector(n);
        matrix B = A.copy();                                        /* We make a copy of A */

        int sweeps = jacobi.cyclic(A, e, V);                        /* We use the jacobi matlib for the implementation of the cyclic sweeps: public static int cyclic(matrix A, vector e, matrix V=null){...} */

        WriteLine($"\nNumber of sweeps: {sweeps}");
        matrix D = (V.T * B * V);

        // D.print("\nEigenvalue-decomposition, V^T*A*V (should be diagonal):");
        D.printfloat("\nEigenvalue-decomposition, V^T*A*V (should be diagonal):");              /* using my print2 to get 0's instead of values with e.g. "e-16"*/
        e.print("\nEigenvalues:\n");
    }
Esempio n. 8
0
    public givens(matrix A)
    {
        R = A.copy();
        n = A.size1;
        m = A.size2;

        // Loop over the columns of the matrix
        for (int q = 0; q < m; q++)
        {
            // Loop over the rows of the matrix that lie under the diagonal
            for (int p = q + 1; p < n; p++)
            {
                double theta = Atan2(R[p, q], R[q, q]);
                // Loop to recalculate the relevant entries in the matrix
                // This runs over all columns in the two rows p and q, which are
                // the only ones affected.
                for (int k = q; k < m; k++)
                {
                    double xq = R[q, k];
                    double xp = R[p, k];
                    R[q, k] = xq * Cos(theta) + xp * Sin(theta);
                    R[p, k] = -xq *Sin(theta) + xp * Cos(theta);
                }
                // Store the angle that made R[p,q] = 0 in the spot instead of zero
                R[p, q] = theta;
            }
        }
    }
Esempio n. 9
0
    static void Main()
    {
        WriteLine("Exam problem 21: \nTwo-sided Jacobi algorithm for Singular Value Decomposition (SVD) \n");;
        int n = 7;

        WriteLine($"Generating Random {n}x{n} matrix");
        matrix A = randomMatrix(n, n), U = new matrix(n, n), V = new matrix(n, n);
        matrix D = A.copy();

        A.print("Matrix A generated:");
        WriteLine("Making composition...");
        int sweeps = twoSidedJacobiSVD(D, U, V);

        WriteLine($"Procedure done!\nNo. of sweeps: {sweeps}.\nNow A --> U*D*V^T, where");
        D.print("D: ");
        U.print("U: ");
        V.print("V: ");
        matrix R = (U * D) * V.transpose();

        R.print("Test that UDV^T = A");
        A.print("A, for reference");
        matrix UUt = U * U.transpose(), VVt = V * V.transpose();

        UUt.print("Test U*U^T = 1");
        VVt.print("Test V*V^T = 1");
    }
Esempio n. 10
0
        public qr_decomp_GS(matrix A)
        {
            int n = A.size1;
            int m = A.size2;

            q = A.copy();
            r = new matrix(m, m);
            vector qi = new vector(n);
            vector qj = new vector(n);

            for (int i = 0; i < m; i++)
            {
                qi      = q.col_toVector(i);
                r[i, i] = Sqrt(qi.dot(qi));

                for (int k = 0; k < n; k++)
                {
                    q[k, i] = q[k, i] / r[i, i];
                }

                for (int j = i + 1; j < m; j++)
                {
                    qi      = q.col_toVector(i);
                    qj      = q.col_toVector(j);
                    r[i, j] = qi.dot(qj);

                    for (int k = 0; k < n; k++)
                    {
                        q[k, j] = q[k, j] - q[k, i] * r[i, j];
                    }
                }
            }
        }
Esempio n. 11
0
    public static int Main()
    {
        Random rand = new Random();

        // Creating the inverse of a matrix
        Write("Inverse of matrix\n");
        matrix A = new matrix(10, 10);

        for (int i = 0; i < A.size1; i++)
        {
            for (int j = 0; j < A.size2; j++)
            {
                A[i, j] = rand.NextDouble() * 9.99;
                if (A[i, j] > 5.0)
                {
                    A[i, j] *= -1;
                }
            }
        }
        Write("A=\n");
        print2(A);
        matrix Q = A.copy(); matrix R = new matrix(A.size1, A.size2);

        matrix.qr_gs_decomp(Q, R);
        matrix B = qr_gs_inverse(Q, R);

        Write("\nA*B=\n");
        print2(A * B);


        return(0);
    }
Esempio n. 12
0
    static void Main()
    {
        /// Test on random matrix ///
        WriteLine("/////////////// Part A - Test on random matrix ///////////////");
        int n    = 5;
        var rand = new Random(1);

        matrix A = new matrix(n, n);
        vector e = new vector(n);
        matrix V = new matrix(n, n);


        for (int i = 0; i < n; i++)
        {
            for (int j = i; j < n; j++)
            {
                A[i, j] = rand.NextDouble();
                A[j, i] = A[i, j];
            }
        }

        A.print($"random {n}x{n} matrix"); WriteLine();
        matrix B      = A.copy();
        int    sweeps = jacobi.cyclic(B, e, V);

        WriteLine($"Number of sweeps in jacobi={sweeps}"); WriteLine();

        matrix D = (V.T * A * V);

        (D).print("Should be a diagonal matrix V.T*B*V="); WriteLine();
        e.print("Eigenvalues should equal the diagonal elements above");

        vector D_diagonal = new vector(n);

        for (int i = 0; i < n; i++)
        {
            D_diagonal[i] = D[i, i];
        }
        if (D_diagonal.approx(e))
        {
            WriteLine("Eigenvalues agree \tTest passed");
        }
        else
        {
            WriteLine("Test failed");
        }
        WriteLine();

        matrix A2 = (V * D * V.T);

        (A2).print("Check that V*D*V.T=A");
        if (A2.approx(A))
        {
            WriteLine("V*D*V.T = A \tTest passed");
        }
        else
        {
            WriteLine("V*D*V.T != A \tTest failed");
        }
    }
Esempio n. 13
0
//constructor
    public gi_rot(matrix A1)
    {
        matrix a   = A1.copy();
        int    row = a.size1;
        int    col = a.size2;

        for (int n = 0; n < col; n++)
        {
            for (int n1 = n + 1; n1 < row; n1++)
            {
                double the = Atan2(a[n1, n], a[n, n]);
                //a[n]=a[n1]*Cos(the)+a[n]*Sin(the);
                //a[n1]=(-1)*a[n1]*Sin(the)+a[n]*Cos(the);
                //a[n, n1]=the;
                for (int n2 = n; n2 < col; n2++)
                {
                    double an_n2  = a[n, n2];
                    double an1_n2 = a[n1, n2];
                    a[n, n2]  = an_n2 * Cos(the) + an1_n2 * Sin(the);
                    a[n1, n2] = (-1) * an_n2 * Sin(the) + an1_n2 * Cos(the);
                }                //end for

                a[n1, n] = the;
            } //end for
        }     //end for
        A = a;
    }         //end constructor...
Esempio n. 14
0
    public CholeskyDecomposition(matrix B)
    {
        matrix A = B.copy();

        int size = A.cols;

        L = new matrix(size, size);
        for (int i = 0; i < size; i++)
        {
            for (int k = 0; k < (i + 1); k++)
            {
                double sum = 0;
                for (int j = 0; j < k; j++)
                {
                    sum += L[i, j] * L[k, j];
                }
                if (i == k)
                {
                    // Do this to prevent NaN and +-Infinity
                    if (A[i, i] - sum <= 0)
                    {
                        throw new CholeskyException("Bad Cholesky");
                    }
                    L[i, k] = Math.Sqrt(A[i, i] - sum);
                }
                else
                {
                    L[i, k] = 1 / L[k, k] * (A[i, k] - sum);
                }
            }
        }
    }
Esempio n. 15
0
    // Comparison of time and rotations needed to calculate the lowest
    // eigenvalue for the cyclic and single value method.
    static void probB5()
    {
        Write("\n\nProblem B.5:\n");
        int    n  = 7;
        matrix A1 = matrixHelp.makeRandSymMatrix(n);
        matrix A2 = A1.copy();

        Write("Finding the largest eigenvalue of the matrix:\n");
        A1.print();

        matrix V1 = new matrix(n, n);
        matrix V2 = new matrix(n, n);

        vector e1 = new vector(n);
        vector e2 = new vector(n);

        int rot1 = jacobi.cyclic(A1, e1, V1);

        int rot2 = jacobi.values(A2, e2, 1, V2, true);

        Write("\n");
        Write($"Largest found by cyclic jacobi:       {e1[n-1]}\n");
        Write($"Largest found by single row jacobi:   {e2[0]}\n");

        Write("\nThe single row method was changed by changing the calculation of the rotation angle theta to: 0.5*Atan2(-Apq, App-Aqq)\n");
    }
Esempio n. 16
0
    public static void Main()
    {
        int    n    = 3;
        matrix A    = new matrix(n, n);
        matrix V    = new matrix(n, n);
        vector e    = new vector(n);
        var    rand = new Random();

        for (int i = 0; i < n; i++)
        {
            for (int j = i; j < n; j++)
            {
                A[i, j] = rand.NextDouble() * 10;
                A[j, i] = A[i, j];
            }
        }
        A.print("Symmetric matrix A:");
        matrix Ao = new matrix(n, n);

        Ao = A.copy();
        int count = jacobi.cycsweep(A, e, V);

        WriteLine($"Number of sweeps: {count}");
        V.print("Eigenvectors");
        A.print("new A");
        e.print("Eigenvalues");
        (V.T * Ao * V).print("V^T*A*V diagonal, test");
    }
Esempio n. 17
0
File: diag.cs Progetto: nronne/ppnm
    }//constructor

    public diagJacobi(matrix x, int firstN, bool eigVec = false, bool largestFirst = false)
    {
        a = x.copy();
        if (largestFirst)
        {
            a = -1 * a;
        }
        if (eigVec)
        {
            v = new matrix(a.size1, a.size1);
            v.set_identity();
        }
        l = new vector(a.size1);
        for (int i = 0; i < a.size1; i++)
        {
            l[i] = a[i, i];
        }
        bool changed;

        sweeps    = 0;
        rotations = 0;
        for (int r = 0; r < firstN; r++)
        {
            do
            {
                changed = this.rowSweep(r);
                sweeps++;
            } while(changed);
        }
        if (largestFirst)
        {
            a = -1 * a;
            l = -1 * l;
        }
    }//constructor
Esempio n. 18
0
    public static void Main()
    {
        // First part of A
        int n   = 5; // Size of quadratic matrix M.
        var rnd = new Random(1);

        Console.WriteLine("Part A1");
        matrix M = new matrix(n, n);

        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                M[i, j] = 4 * rnd.NextDouble() - 1.5;
                M[j, i] = M[i, j];
            }
        }
        matrix M2 = M.copy();

        M.print("We choose an arbitrary matrix M = ");
        vector D      = new vector(n);
        matrix V      = new matrix(n, n);
        int    sweeps = Jacobi_diagonalization.cyclic_sweep(M, V, D);
        matrix temp2  = V.T * M2 * V;

        Console.WriteLine($"Total number of sweeps done is = {sweeps}");
        temp2.print("V.T*M*V = ");
        D.print("Eigenvalues = ");
    }
Esempio n. 19
0
File: diag.cs Progetto: nronne/ppnm
    /*
     * Remember: a = v^Tav=d;
     */

    public diagJacobi(matrix x, bool eigVec = false, bool classic = false)
    {
        if (classic)
        {
            this.classicJacobi(x);
        }
        else
        {
            a = x.copy();
            if (eigVec)
            {
                v = new matrix(a.size1, a.size1);
                v.set_identity();
            }
            l = new vector(a.size1);
            for (int i = 0; i < a.size1; i++)
            {
                l[i] = a[i, i];
            }

            bool changed;
            sweeps    = 0;
            rotations = 0;
            do
            {
                changed = this.cyclicSweep();
                sweeps++;
            } while(changed);
        }
    }//constructor
Esempio n. 20
0
    static void Main()
    {
        var rnd = new Random();
        var A   = new matrix(3, 3);

        for (int i = 0; i < A.size1; i++)
        {
            for (int j = 0; j < A.size2; j++)
            {
                A[i, j] = 10 * (rnd.NextDouble() - 0.5);
            }
        }
        var Q = A.copy();
        var R = new matrix(Q.size2, Q.size2);

        WriteLine("\n__________________________________________________________________________________________________________");
        WriteLine("Question B:\nMatrix inverse by Gram-Schmidt QR factorization");
        WriteLine("Random matrix");
        A.print("A = ");
        qr_gs.qr_gs_decomp(Q, R);
        WriteLine("Factorized into");
        Q.print("Q = ");
        R.print("R = ");

        var B = qr_gs.qr_gs_inverse(Q, R);

        WriteLine("Inverse of A:");
        B.print("A^-1=B=");
        WriteLine("Product should give identity");

        (A * B).print("I=AB=");
        WriteLine("__________________________________________________________________________________________________________\n");
    }
Esempio n. 21
0
    public QRdecompositionGS(matrix A)
    {
        Q = A.copy();
        R = new matrix(Q.size2, Q.size2);

        GramSchmidt(A);
    }
Esempio n. 22
0
    public static matrix Givens(matrix A)
    {
        int    n = A.size1; int m = A.size2;
        matrix A_t = A.copy();

// The Jacobi matrix G is given as an identity matrix except that it contains elements of a rotation matrix
// The elements G_pp, G_qq are replaced with cos(θ) and G_qp and G_pq with -sin(θ) and sin(θ) respectively
// G is therefore a rotation of a vector in the p,q plane
// We aim to use this transformation to zero elements of A by using the Givens rotation: A->GA=A_t
// We must choose θ=Atan2(A[p,q],A[q,q]) to zero the p,qth element in A under a Givens rotation:

        for (int q = 0; q < m; q = q + 1)
        {
            for (int p = q + 1; p < n; p = p + 1)
            {
                double θ = Atan2(A_t[p, q], A_t[q, q]);
                for (int k = q; k < m; k = k + 1)
                {
                    double xq = A_t[q, k]; double xp = A_t[p, k];
                    A_t[q, k] = xq * Cos(θ) + xp * Sin(θ); A_t[p, k] = -xq *Sin(θ) + xp * Cos(θ);
                }                                            // New elements in A, after the rotation
                A_t[p, q] = θ;
            } // Adding the θ which zero'ed the p,qth entry in A
        } // Yields upper triangular matrix R, but with the added θ's which zeroed the corresponding lower triangular entries in A
        return(A_t);
    }
Esempio n. 23
0
    public static (matrix, int) values(matrix A, int nvalues = 1)
    {
        bool   changed; int rotations = 0, n = A.size1;
        matrix D = A.copy();

//	matrix V = new matrix(n,n);
//	for(int i=0;i<n;i++)V[i,i]=1.0;
        for (int p = 0; p < nvalues; p++)
        {
            do
            {
                changed = false;
                for (int q = p + 1; q < n; q++)
                {
                    double dpp = D[p, p];
                    double dqq = D[q, q];
                    double dpq = D[p, q];
                    double phi = 0.5 * Math.Atan2(2 * dpq, dqq - dpp);
                    double c = Math.Cos(phi), s = Math.Sin(phi);
                    double dpp1 = c * c * dpp - 2 * s * c * dpq + s * s * dqq;
                    double dqq1 = s * s * dpp + 2 * s * c * dpq + c * c * dqq;
                    if (dpp1 != dpp || dqq1 != dqq)
                    {
                        rotations++;
                        changed = true;
                        D[p, p] = dpp1;
                        D[q, q] = dqq1;
                        D[p, q] = 0.0;
                        D[q, p] = 0.0;
                        for (int i = p + 1; i < q; i++)
                        {
                            double dpi = D[p, i];
                            double diq = D[i, q];
                            D[p, i] = c * dpi - s * diq;
                            D[i, q] = c * diq + s * dpi;
                            D[i, p] = D[p, i];
                            D[q, i] = D[i, q];
                        }
                        for (int i = q + 1; i < n; i++)
                        {
                            double dpi = D[p, i];
                            double dqi = D[q, i];
                            D[p, i] = c * dpi - s * dqi;
                            D[q, i] = c * dqi + s * dpi;
                            D[i, p] = D[p, i];
                            D[i, q] = D[q, i];
                        }
//			for(int i=0;i<n;i++){
//				double vip=V[i,p];
//				double viq=V[i,q];
//				V[i,p]=c*vip-s*viq;
//				V[i,q]=c*viq+s*vip;
//				}
                    }
                }
            }while(changed);
        }
        return(D, rotations);
    }
Esempio n. 24
0
    public gram_s(matrix A)
    {
        matrix a         = A.copy();
        int    rows_A    = A.size1;
        int    columns_A = A.size2;
        matrix q         = new matrix(rows_A, columns_A);

        if (rows_A < columns_A)
        {
            Console.Error.WriteLine("Error!!! Matrix A has more columns then rows, try transposing A |\n Error!! \n Error!!!");
        }//end if
        else
        {
            matrix R1 = new matrix(columns_A, columns_A);
            //somthing else...
            for (int n = 0; n < columns_A; n++)
            {
                R1[n, n] = Sqrt(col_ip(a, n, a, n));
                a[n]     = a[n] / R1[n, n];
                //for(int n1=0; n1<rows_A; n1++){
                //a[n1,n]=a[n1,n]/R1[n,n];
                //}//end for

                for (int n2 = n + 1; n2 < columns_A; n2++)
                {
                    R1[n, n2] = col_ip(a, n, a, n2);
                    for (int n3 = 0; n3 < rows_A; n3++)
                    {
                        a[n3, n2] = a[n3, n2] - a[n3, n] * R1[n, n2];
                    } //end for
                }     //end for
            }         //end for

            R = R1;
            Q = a;
        }//end else

        // this does not work... I will try somthing else ...
        //for(int n=0; n<columns_A; n++){
        //double rnn= Sqrt(col_ip(a,n,a,n)) ;
        //R1[n,n]=Sqrt(rnn);
        //	for(int n1=0; n1<rows_A; n1++){
        //	q[n1,n]=a[n1,n]/rnn;
        //	}// end for

        //	for(int j=n+1; j<columns_A; j++){
        //	R1[n,j]=col_ip(q,n,a,j);
        //		for(int n2=0; n2< rows_A; n2++){
        //		a[n2,j]=a[n2,j]-R1[n,j]*q[n2,n];
        //		}//end for

        //	}//end for

        //}//end for
        //R=R1;
        //Q=q;
        //}//end else
    }    // end constructor
Esempio n. 25
0
    static void Main()
    {
        int    n   = 5; //size of real symmetric matrix
        matrix A   = new matrix(n, n);
        var    rnd = new Random(1);

        for (int i = 0; i < n; i++)             /* Construction of a random vector */
        {
            for (int j = 0; j < n; j++)
            {
                A[i, j] = (rnd.NextDouble() * 10);
                A[j, i] = A[i, j];              /* We make sure that the matrix is symmetric */
            }
        }
        A.printfloat("Random symmetric matrix, A:");
        matrix V  = new matrix(n, n);
        matrix V2 = new matrix(n, n);
        vector e  = new vector(n);
        vector e2 = new vector(n);
        // matrix B=A.copy();
        matrix B2 = A.copy();

        int rotations = jacobi.classic2(A, e, V);    /* We use the jacobi matlib for the implementation of the cyclic sweeps: public static int cyclic(matrix A, vector e, matrix V=null){...} */

        WriteLine($"\nNumber of rotations: {rotations}");
        // matrix D=(V.T*B*V);
        // D.printfloat("\nClassic: Eigenvalue-decomposition, V^T*A*V (should be diagonal):");

        int sweeps = jacobi.cyclic(B2, e2, V2);

        WriteLine($"Number of sweeps: {sweeps}");
        // matrix D2=(V2.T*B*V2);
        // D2.printfloat("\nCyclic: Eigenvalue-decomposition, V^T*A*V (should be diagonal):");

        // var rnd = new Random(1);
        // int n = 4;
        // matrix v_c = new matrix(n,n);
        // matrix v_classic = new matrix(n,n);
        // vector e_classic = new vector(n);

        // var A_c = new matrix(n,n);
        // for(int i=0;i<n;i++){
        //     for(int j=i;j<n;j++){
        //         A_c[i,j]=2*(rnd.NextDouble()-0.5);
        //         A_c[j,i]=A_c[i,j];
        //     }
        // }
        // matrix B=A_c.copy();

        // var A_classic = A_c.copy();
        // int rotations = classic(A_classic,e_classic,v_classic);
        // A_classic.printfloat("A classic transformed");
        // // e_classic.print("Eigenvalues calculated with classic:");
        // // v_classic.print("Eigenvectors calculated with classic:");
        // var VTAV=v_classic.T*B*v_classic;
        // VTAV.printfloat("V^T*A*V:");
    }
Esempio n. 26
0
    public static vector high_eig(matrix A, int nvalues = 1)
    {
        bool   changed; int n = A.size1;
        matrix D = A.copy();

        for (int p = 0; p < nvalues; p++)
        {
            do
            {
                changed = false;
                for (int q = p + 1; q < n; q++)
                {
                    double dpp = D[p, p];
                    double dqq = D[q, q];
                    double dpq = D[p, q];
                    double phi = 0.5 * Math.Atan2(-2 * dpq, -dqq + dpp);
                    double c = Math.Cos(phi), s = Math.Sin(phi);
                    double dpp1 = c * c * dpp - 2 * s * c * dpq + s * s * dqq;
                    double dqq1 = s * s * dpp + 2 * s * c * dpq + c * c * dqq;
                    if (dpp1 != dpp || dqq1 != dqq)
                    {
                        changed = true;
                        D[p, p] = dpp1;
                        D[q, q] = dqq1;
                        D[p, q] = 0.0;
                        D[q, p] = 0.0;
                        for (int i = p + 1; i < q; i++)
                        {
                            double dpi = D[p, i];
                            double diq = D[i, q];
                            D[p, i] = c * dpi - s * diq;
                            D[i, q] = c * diq + s * dpi;
                            D[i, p] = D[p, i];
                            D[q, i] = D[i, q];
                        }
                        for (int i = q + 1; i < n; i++)
                        {
                            double dpi = D[p, i];
                            double dqi = D[q, i];
                            D[p, i] = c * dpi - s * dqi;
                            D[q, i] = c * dqi + s * dpi;
                            D[i, p] = D[p, i];
                            D[i, q] = D[q, i];
                        }
                    }
                }
            }while(changed);
        }
        vector e = new vector(n);

        for (int i = 0; i < n; i++)
        {
            e[i] = D[i, i];
        }
        return(e);
    }
Esempio n. 27
0
    public static void Main()
    {
        for (int n = 5; n < 300; n = n + 50)
        {
            matrix A    = new matrix(n, n);
            matrix V    = new matrix(n, n);
            vector e    = new vector(n);
            var    rand = new Random(1);

            for (int i = 0; i < n; i++)
            {
                for (int j = i; j < n; j++)
                {
                    A[i, j] = 2 * (rand.NextDouble() - 0.5);
                    A[j, i] = A[i, j];
                }
            }

            Stopwatch rowt = new Stopwatch();  //one EV
            matrix    AAf  = A.copy();
            rowt.Start();
            int count = jacobiB.jacobirow(AAf, e, 1, V);
            rowt.Stop();

            Stopwatch rowh = new Stopwatch();  //full diag
            matrix    Vh   = new matrix(n, n);
            vector    eh   = new vector(n);
            matrix    AAh  = A.copy();
            rowh.Start();
            int counth = jacobiB.jacobirow(AAh, eh, n, Vh);
            rowh.Stop();

            matrix    Vt   = new matrix(n, n);//cyclic
            vector    et   = new vector(n);
            matrix    AAt  = A.copy();
            Stopwatch cyct = new Stopwatch();
            cyct.Start();
            int countt = jacobi.cycsweep(AAt, et, Vt);
            cyct.Stop();

            WriteLine($"{n} {rowt.ElapsedMilliseconds} {count} {rowh.ElapsedMilliseconds} {counth} {cyct.ElapsedMilliseconds} {countt}");
        }
    }
Esempio n. 28
0
    static void Main()
    {
        // Testing that the jacobiAlgorithm works:

        int n = 5;

        vector e      = new vector(n);
        matrix V      = new matrix(n, n);
        matrix A      = generateRandommatrix(n, n);
        matrix B      = A.copy();
        int    sweeps = jacobi.jacobi_cyclic(A, e, V);

        WriteLine("---------Problem A1----------");
        WriteLine("\nTesting that the Jacobi algorithm works as intended:");
        A.print("\nRandom square matrix A:");
        WriteLine("\nEigenvalue decomposition of A=V*D*V^T:");
        (V.transpose() * B * V).print("\nD = V^T*A*V = ");
        e.print("\nListed eigenvalues:\t");
        WriteLine($"\nNumber of sweeps required to diagonalize A: {sweeps}");

        // Particle in a box
        n = 50;
        matrix H = Hamiltonian.boxHamilton(n);

        B      = H.copy();
        V      = new matrix(n, n);
        e      = new vector(n);
        sweeps = jacobi.jacobi_cyclic(H, e, V);
        WriteLine("\n---------Problem A2----------");
        WriteLine("\nNow solving for a particle in a box.");
        WriteLine($"\nThe dimensions of the soon to be diagonalized Hamiltonian is {n}x{n}");
        WriteLine("\nComparison of the calculated eigenvalues and the exact:\n");
        WriteLine("n Calculated     Exact:");
        for (int k = 0; k < n / 3; k++)
        {
            double exact      = PI * PI * (k + 1) * (k + 1);
            double calculated = e[k];
            WriteLine($"{k} {calculated:f4}\t {exact:f4}");
        }

        // plotting time
        StreamWriter solutions = new StreamWriter("SolutionsA.txt");

        for (int i = 0; i < n; i++)
        {
            solutions.Write($"{i*(1.0/n)}");
            for (int k = 0; k < 5; k++)
            {
                solutions.Write($" {V[i,k]}");
            }
            solutions.Write("\n");
        }
        solutions.Close();
    }
Esempio n. 29
0
    static void Main()
    {
        /////////////// QM-problem ///////////////
        WriteLine($"/////////////// Part A - QM-problem ///////////////");
        int    N = 100;
        double s = 1.0 / (N + 1);
        matrix H = new matrix(N, N);

        for (int i = 0; i < N - 1; i++)
        {
            H[i, i]     = -2;
            H[i, i + 1] = 1;
            H[i + 1, i] = 1;
        }
        H[N - 1, N - 1] = -2;
        H = -H / s / s;

        matrix H1        = H.copy();
        vector eigenvals = new vector(N);
        matrix V         = new matrix(N, N);
        int    sweeps    = jacobi.cyclic(H1, eigenvals, V);


        // H.print($"Hamilton {H.size1}x{H.size2} matrix"); WriteLine();
        WriteLine($"Number of sweeps in jacobi={sweeps}"); WriteLine();

        // matrix D=(V.T*H*V);
        // (D).print("Should be a diagonal matrix V.T*H*V=");WriteLine();
        // eigenvals.print("Eigenvalues should equal the diagonal elements above"); WriteLine();

        // matrix H2=(V*D*V.T);
        // (H2).print("Check that V*D*V.T=H"); WriteLine();



        WriteLine($"k \t Calculated \t  Exact \t Relative deviation");
        for (int k = 0; k < N / 3; k++)
        {
            double exact      = PI * PI * (k + 1) * (k + 1);
            double calculated = eigenvals[k];
            WriteLine($"{k} \t {calculated} \t {exact} \t {(calculated-exact)/exact*100}%");
        }

        for (int k = 0; k < 3; k++)
        {
            Error.WriteLine($"{0} {0}");
            for (int i = 0; i < N; i++)
            {
                Error.WriteLine($"{(i+1.0)/(N+1)} {V[i,k]}");
            }
            Error.WriteLine($"{1} {0}");
            Error.WriteLine(); Error.WriteLine();
        }
    }
Esempio n. 30
0
    public static void Main()
    {
        // Setup the output file:
        var outfile = new System.IO.StreamWriter("data.convergence_size.txt");
        int mMax    = 30;

        int[] ns = new int[] { 5, 10, 30, 50, 100, 150, 250 };
        foreach (int n in ns)
        {
            matrix A = matrixHelp.makeRandSymMatrix(n);

            // Using m = n ensures that all the right eigenvalues are found
            matrix E_full = new matrix(n, n);
            vector e_full = new vector(n);
            lanczos.eigenvalues(A, E_full, e_full);

            for (int m = 1; (m < n) && (m <= mMax); m++)
            {
                matrix A_m = A.copy();
                matrix E_m = new matrix(n, m);
                vector e_m = new vector(m);

                lanczos.eigenvalues(A_m, E_m, e_m);

                Func <int, double> e = (i) => {
                    if (i < m)
                    {
                        return(Abs(e_m[(e_m.size - 1) - i] - e_full[e_full.size - 1 - i]));
                    }
                    else
                    {
                        return(Double.NaN);
                    }
                };

                Func <int, double> E_div = (i) => { if (i < m)
                                                    {
                                                        double norm1 = (E_m[E_m.size2 - 1 - i] - E_full[E_full.size2 - 1 - i]).norm();
                                                        double norm2 = (E_m[E_m.size2 - 1 - i] + E_full[E_full.size2 - 1 - i]).norm();
                                                        return((norm1 < norm2)?norm1:norm2);
                                                    }
                                                    else
                                                    {
                                                        return(Double.NaN);
                                                    } };

                outfile.Write("{0} {1} {2}\n", m, e(0), E_div(0));
            }

            outfile.Write("\n\n");
        }

        outfile.Close();
    }