Esempio n. 1
0
        /* blocksize 0 is guaranteed to be short, 1 is guaranteed to be long. They may be equal, but short will never ge greater than long */

        static public int vorbis_info_blocksize(ref vorbis_info vi, int zo)
        {
            codec_setup_info ci = vi.codec_setup as codec_setup_info;

            return((ci != null) ? ci.blocksizes[zo] : -1);
        }
Esempio n. 2
0
        static int mapping0_inverse(ref vorbis_block vb, vorbis_info_mapping l)
        {
            vorbis_dsp_state     vd   = vb.vd;
            vorbis_info          vi   = vd.vi;
            codec_setup_info     ci   = vi.codec_setup as codec_setup_info;
            private_state        b    = vd.backend_state as private_state;
            vorbis_info_mapping0 info = l as vorbis_info_mapping0;

            int i, j;
            int n = vb.pcmend = ci.blocksizes[vb.W];

            float **pcmbundle  = stackalloc float *[vi.channels];
            int *   zerobundle = stackalloc int[vi.channels];

            int *  nonzero   = stackalloc int[vi.channels];
            void **floormemo = stackalloc void *[vi.channels];

            /* recover the spectral envelope; store it in the PCM vector for now */
            for (i = 0; i < vi.channels; i++)
            {
                int submap = info.chmuxlist[i];

                floormemo[i] = _floor_P[ci.floor_type[info.floorsubmap[submap]]].inverse1(ref vb, b.flr[info.floorsubmap[submap]]);

                if (floormemo[i] != null)
                {
                    nonzero[i] = 1;
                }
                else
                {
                    nonzero[i] = 0;
                }

                ZeroMemory(vb.pcm[i], sizeof(float) * n / 2);
            }

            /* channel coupling can 'dirty' the nonzero listing */
            for (i = 0; i < info.coupling_steps; i++)
            {
                if (nonzero[info.coupling_mag[i]] != 0 || nonzero[info.coupling_ang[i]] != 0)
                {
                    nonzero[info.coupling_mag[i]] = 1;
                    nonzero[info.coupling_ang[i]] = 1;
                }
            }

            /* recover the residue into our working vectors */
            for (i = 0; i < info.submaps; i++)
            {
                int ch_in_bundle = 0;

                for (j = 0; j < vi.channels; j++)
                {
                    if (info.chmuxlist[j] == i)
                    {
                        if (nonzero[j] != 0)
                        {
                            zerobundle[ch_in_bundle] = 1;
                        }
                        else
                        {
                            zerobundle[ch_in_bundle] = 0;
                        }

                        pcmbundle[ch_in_bundle++] = vb.pcm[j];
                    }
                }

                _residue_P[ci.residue_type[info.residuesubmap[i]]].inverse(ref vb, b.residue[info.residuesubmap[i]], pcmbundle, zerobundle, ch_in_bundle);
            }

            /* channel coupling */
            for (i = info.coupling_steps - 1; i >= 0; i--)
            {
                float *pcmM = vb.pcm[info.coupling_mag[i]];
                float *pcmA = vb.pcm[info.coupling_ang[i]];

                for (j = 0; j < n / 2; j++)
                {
                    float mag = pcmM[j];
                    float ang = pcmA[j];

                    if (mag > 0)
                    {
                        if (ang > 0)
                        {
                            pcmM[j] = mag;
                            pcmA[j] = mag - ang;
                        }
                        else
                        {
                            pcmA[j] = mag;
                            pcmM[j] = mag + ang;
                        }
                    }
                    else
                    {
                        if (ang > 0)
                        {
                            pcmM[j] = mag;
                            pcmA[j] = mag + ang;
                        }
                        else
                        {
                            pcmA[j] = mag;
                            pcmM[j] = mag - ang;
                        }
                    }
                }
            }

            /* compute and apply spectral envelope */
            for (i = 0; i < vi.channels; i++)
            {
                float *pcm    = vb.pcm[i];
                int    submap = info.chmuxlist[i];

                _floor_P[ci.floor_type[info.floorsubmap[submap]]].inverse2(ref vb, b.flr[info.floorsubmap[submap]], floormemo[i], pcm);
            }

            /* transform the PCM data; takes PCM vector, vb; modifies PCM vector */
            /* only MDCT right now.... */
            for (i = 0; i < vi.channels; i++)
            {
                float *pcm = vb.pcm[i];
                mdct_backward(b.transform[vb.W][0] as mdct_lookup, pcm, pcm);
            }

            /* all done! */
            return(0);
        }
Esempio n. 3
0
        /* also responsible for range checking */
        static vorbis_info_mapping mapping0_unpack(ref vorbis_info vi, ref Ogg.oggpack_buffer opb)
        {
            int i, b;

            vorbis_info_mapping  _info = new vorbis_info_mapping0();
            vorbis_info_mapping0 info  = _info as vorbis_info_mapping0;
            codec_setup_info     ci    = vi.codec_setup as codec_setup_info;

            b = Ogg.oggpack_read(ref opb, 1);

            if (b < 0)
            {
                goto err_out;
            }

            if (b != 0)
            {
                info.submaps = Ogg.oggpack_read(ref opb, 4) + 1;

                if (info.submaps <= 0)
                {
                    goto err_out;
                }
            }
            else
            {
                info.submaps = 1;
            }

            b = Ogg.oggpack_read(ref opb, 1);

            if (b < 0)
            {
                goto err_out;
            }

            if (b != 0)
            {
                info.coupling_steps = Ogg.oggpack_read(ref opb, 8) + 1;

                if (info.coupling_steps <= 0)
                {
                    goto err_out;
                }

                for (i = 0; i < info.coupling_steps; i++)
                {
                    int testM = info.coupling_mag[i] = Ogg.oggpack_read(ref opb, ilog((uint)vi.channels));
                    int testA = info.coupling_ang[i] = Ogg.oggpack_read(ref opb, ilog((uint)vi.channels));

                    if (testM < 0 || testA < 0 || testM == testA || testM >= vi.channels || testA >= vi.channels)
                    {
                        goto err_out;
                    }
                }
            }

            if (Ogg.oggpack_read(ref opb, 2) != 0) /* 2,3:reserved */
            {
                goto err_out;
            }

            if (info.submaps > 1)
            {
                for (i = 0; i < vi.channels; i++)
                {
                    info.chmuxlist[i] = Ogg.oggpack_read(ref opb, 4);

                    if (info.chmuxlist[i] >= info.submaps || info.chmuxlist[i] < 0)
                    {
                        goto err_out;
                    }
                }
            }

            for (i = 0; i < info.submaps; i++)
            {
                Ogg.oggpack_read(ref opb, 8); /* time submap unused */
                info.floorsubmap[i] = Ogg.oggpack_read(ref opb, 8);

                if (info.floorsubmap[i] >= ci.floors || info.floorsubmap[i] < 0)
                {
                    goto err_out;
                }

                info.residuesubmap[i] = Ogg.oggpack_read(ref opb, 8);

                if (info.residuesubmap[i] >= ci.residues || info.residuesubmap[i] < 0)
                {
                    goto err_out;
                }
            }

            return(info);

err_out:
            mapping0_free_info(ref _info);
            return(null);
        }
Esempio n. 4
0
        static int mapping0_forward(ref vorbis_block vb)
        {
            vorbis_dsp_state vd = vb.vd;
            vorbis_info      vi = vd.vi;

            codec_setup_info      ci  = vi.codec_setup as codec_setup_info;
            private_state         b   = vb.vd.backend_state as private_state;
            vorbis_block_internal vbi = vb._internal as vorbis_block_internal;

            int n = vb.pcmend;
            int i, j, k;

            int *   nonzero     = stackalloc int[vi.channels];
            float **gmdct       = (float **)_vorbis_block_alloc(ref vb, vi.channels * sizeof(float *));
            int **  iwork       = (int **)_vorbis_block_alloc(ref vb, vi.channels * sizeof(int *));
            int *** floor_posts = (int ***)_vorbis_block_alloc(ref vb, vi.channels * sizeof(int **));

            float  global_ampmax = vbi.ampmax;
            float *local_ampmax  = stackalloc float[vi.channels];

            int blocktype  = vbi.blocktype;
            int modenumber = vb.W;

            vorbis_info_mapping0 info     = ci.map_param[modenumber] as vorbis_info_mapping0;
            vorbis_look_psy      psy_look = b.psy[blocktype + (vb.W != 0 ? 2 : 0)];

            vb.mode = modenumber;

            for (i = 0; i < vi.channels; i++)
            {
                float scale = 4.0f / n;
                float scale_dB;

                float *pcm    = vb.pcm[i];
                float *logfft = pcm;

                iwork[i] = (int *)_vorbis_block_alloc(ref vb, (n / 2) * sizeof(int));
                gmdct[i] = (float *)_vorbis_block_alloc(ref vb, (n / 2) * sizeof(float));

                /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that
                 * returned dB values about a third of a decibel too high.  The bug was harmless because tunings
                 * implicitly took that into account.  However, fixing the bug in the estimator requires changing all the tunings as well.
                 * For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */

                scale_dB = todB(scale) + 0.345f;

                /* window the PCM data */
                _vorbis_apply_window(pcm, ref b.window, ref ci.blocksizes, vb.lW, vb.W, vb.nW);

                /* transform the PCM data */
                /* only MDCT right now.... */
                mdct_forward(b.transform[vb.W][0] as mdct_lookup, pcm, gmdct[i]);

                /* FFT yields more accurate tonal estimation (not phase sensitive) */
                drft_forward(ref b.fft_look[vb.W], pcm);

                /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that
                 * returned dB values about a third of a decibel too high.  The bug was harmless because tunings
                 * implicitly took that into account.  However, fixing the bug in the estimator requires changing all the tunings as well.
                 * For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */

                logfft[0]       = scale_dB + todB(*pcm) + 0.345f;
                local_ampmax[i] = logfft[0];

                for (j = 1; j < n - 1; j += 2)
                {
                    float temp = pcm[j] * pcm[j] + pcm[j + 1] * pcm[j + 1];

                    /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that
                     * returned dB values about a third of a decibel too high.  The bug was harmless because tunings
                     * implicitly took that into account.  However, fixing the bug in the estimator requires changing all the tunings as well.
                     * For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */

                    temp = logfft[(j + 1) >> 1] = scale_dB + 0.5f * todB(temp) + 0.345f;

                    if (temp > local_ampmax[i])
                    {
                        local_ampmax[i] = temp;
                    }
                }

                if (local_ampmax[i] > 0.0f)
                {
                    local_ampmax[i] = 0.0f;
                }

                if (local_ampmax[i] > global_ampmax)
                {
                    global_ampmax = local_ampmax[i];
                }
            }

            {
                float *noise = (float *)_vorbis_block_alloc(ref vb, n / 2 * sizeof(float));
                float *tone  = (float *)_vorbis_block_alloc(ref vb, n / 2 * sizeof(float));

                for (i = 0; i < vi.channels; i++)
                {
                    /* the encoder setup assumes that all the modes used by any
                     * specific bitrate tweaking use the same floor */

                    int submap = info.chmuxlist[i];

                    /* the following makes things clearer to *me* anyway */

                    float *mdct   = gmdct[i];
                    float *logfft = vb.pcm[i];

                    float *logmdct = logfft + n / 2;
                    float *logmask = logfft;

                    vb.mode = modenumber;

                    floor_posts[i] = (int **)_vorbis_block_alloc(ref vb, PACKETBLOBS * sizeof(int *));
                    ZeroMemory(floor_posts[i], sizeof(int *) * PACKETBLOBS);

                    for (j = 0; j < n / 2; j++)
                    {
                        /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that
                         * returned dB values about a third of a decibel too high.  The bug was harmless because tunings
                         * implicitly took that into account.  However, fixing the bug in the estimator requires changing all the tunings as well.
                         * For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */

                        logmdct[j] = todB(mdct[j]) + 0.345f;

                        /* first step; noise masking.  Not only does 'noise masking' give us curves from which we can decide how much resolution
                         * to give noise parts of the spectrum, it also implicitly hands us a tonality estimate (the larger the value in the
                         * 'noise_depth' vector, the more tonal that area is) */

                        _vp_noisemask(ref psy_look, logmdct, noise); /* noise does not have by-frequency offset bias applied yet */

                        /* second step: 'all the other crap'; all the stuff that isn't computed/fit for bitrate management goes in the second psy
                         * vector.  This includes tone masking, peak limiting and ATH */

                        _vp_tonemask(ref psy_look, logfft, tone, global_ampmax, local_ampmax[i]);

                        /* third step; we offset the noise vectors, overlay tone masking.  We then do a floor1-specific line fit.  If we're
                         * performing bitrate management, the line fit is performed multiple times for up/down tweakage on demand. */

                        _vp_offset_and_mix(ref psy_look, noise, tone, 1, logmask, mdct, logmdct);

                        /* this algorithm is hardwired to floor 1 for now; abort out if  we're *not* floor1.  This won't happen unless someone has
                         * broken the encode setup lib.  Guard it anyway. */

                        if (ci.floor_type[info.floorsubmap[submap]] != 1)
                        {
                            return(-1);
                        }

                        floor_posts[i][PACKETBLOBS / 2] = floor1_fit(ref vb, b.flr[info.floorsubmap[submap]] as vorbis_look_floor1, logmdct, logmask);

                        /* are we managing bitrate?  If so, perform two more fits for later rate tweaking (fits represent hi/lo) */
                        if (vorbis_bitrate_managed(ref vb) != 0 && floor_posts[i][PACKETBLOBS / 2] != null)
                        {
                            /* higher rate by way of lower noise curve */
                            _vp_offset_and_mix(ref psy_look, noise, tone, 2, logmask, mdct, logmdct);

                            floor_posts[i][PACKETBLOBS - 1] = floor1_fit(ref vb, b.flr[info.floorsubmap[submap]] as vorbis_look_floor1, logmdct, logmask);

                            /* lower rate by way of higher noise curve */
                            _vp_offset_and_mix(ref psy_look, noise, tone, 0, logmask, mdct, logmdct);

                            floor_posts[i][0] = floor1_fit(ref vb, b.flr[info.floorsubmap[submap]] as vorbis_look_floor1, logmdct, logmask);

                            /* we also interpolate a range of intermediate curves for
                             * intermediate rates */
                            for (k = 1; k < PACKETBLOBS / 2; k++)
                            {
                                floor_posts[i][k] = floor1_interpolate_fit(ref vb, b.flr[info.floorsubmap[submap]] as vorbis_look_floor1, floor_posts[i][0], floor_posts[i][PACKETBLOBS / 2], k * 65536 / (PACKETBLOBS / 2));
                            }

                            for (k = PACKETBLOBS / 2 + 1; k < PACKETBLOBS - 1; k++)
                            {
                                floor_posts[i][k] = floor1_interpolate_fit(ref vb, b.flr[info.floorsubmap[submap]] as vorbis_look_floor1, floor_posts[i][PACKETBLOBS / 2], floor_posts[i][PACKETBLOBS - 1], (k - PACKETBLOBS / 2) * 65536 / (PACKETBLOBS / 2));
                            }
                        }
                    }
                }

                vbi.ampmax = global_ampmax;

                /*
                 * the next phases are performed once for vbr-only and PACKETBLOB
                 * times for bitrate managed modes.
                 *
                 * 1) encode actual mode being used
                 * 2) encode the floor for each channel, compute coded mask curve/res
                 * 3) normalize and couple.
                 * 4) encode residue
                 * 5) save packet bytes to the packetblob vector
                 */

                /* iterate over the many masking curve fits we've created */

                {
                    int **couple_bundle = stackalloc int *[vi.channels];
                    int * zerobundle    = stackalloc int[vi.channels];

                    for (k = (vorbis_bitrate_managed(ref vb) != 0 ? 0 : PACKETBLOBS / 2); k <= (vorbis_bitrate_managed(ref vb) != 0 ? PACKETBLOBS - 1 : PACKETBLOBS / 2); k++)
                    {
                        Ogg.oggpack_buffer opb = vbi.packetblob[k];

                        /* start out our new packet blob with packet type and mode */
                        /* Encode the packet type */
                        Ogg.oggpack_write(ref opb, 0, 1);

                        /* Encode the modenumber */
                        /* Encode frame mode, pre,post windowsize, then dispatch */
                        Ogg.oggpack_write(ref opb, (uint)modenumber, b.modebits);

                        if (vb.W != 0)
                        {
                            Ogg.oggpack_write(ref opb, (uint)vb.lW, 1);
                            Ogg.oggpack_write(ref opb, (uint)vb.nW, 1);
                        }

                        /* encode floor, compute masking curve, sep out residue */
                        for (i = 0; i < vi.channels; i++)
                        {
                            int  submap   = info.chmuxlist[i];
                            int *ilogmask = iwork[i];

                            nonzero[i] = floor1_encode(ref opb, ref vb, b.flr[info.floorsubmap[submap]] as vorbis_look_floor1, floor_posts[i][k], ilogmask);
                        }

                        /* our iteration is now based on masking curve, not prequant and coupling.  Only one prequant/coupling step */

                        /* quantize/couple */
                        /* incomplete implementation that assumes the tree is all depth one, or no tree at all */
                        _vp_couple_quantize_normalize(k, ci.psy_g_param, ref psy_look, info, gmdct, iwork, nonzero, ci.psy_g_param.sliding_lowpass[vb.W, k], vi.channels);

                        /* classify and encode by submap */
                        for (i = 0; i < info.submaps; i++)
                        {
                            int   ch_in_bundle = 0;
                            int **classifications;
                            int   resnum = info.residuesubmap[i];

                            for (j = 0; j < vi.channels; j++)
                            {
                                if (info.chmuxlist[j] == i)
                                {
                                    zerobundle[ch_in_bundle] = 0;

                                    if (nonzero[j] != 0)
                                    {
                                        zerobundle[ch_in_bundle] = 1;
                                    }

                                    couple_bundle[ch_in_bundle++] = iwork[j];
                                }
                            }

                            classifications = _residue_P[ci.residue_type[resnum]]._class(ref vb, b.residue[resnum], couple_bundle, zerobundle, ch_in_bundle);
                            ch_in_bundle    = 0;

                            for (j = 0; j < vi.channels; j++)
                            {
                                if (info.chmuxlist[j] == i)
                                {
                                    couple_bundle[ch_in_bundle++] = iwork[j];
                                }
                            }

                            _residue_P[ci.residue_type[resnum]].forward(ref opb, ref vb, b.residue[resnum], couple_bundle, zerobundle, ch_in_bundle, classifications, i);
                        }

                        /* ok, done encoding.  Next protopacket. */
                    }
                }

                return(0);
            }
        }