Esempio n. 1
0
        /// <summary>
        /// Use this constructor to create an empty lake. Should only be used for unit testing
        /// </summary>
        /// <param name="VolumeOfLakeWater"></param>
        public Lake(string name, double VolumeOfLakeWater) : base(name)
        {
            SurfaceArea = XYPolygon.GetSquare(VolumeOfLakeWater);
            Depth       = 1;

            //Only used in unit test. Otherwise it should be set through the state
            CurrentStoredWater = new WaterPacket(0);
            Initialize();
        }
Esempio n. 2
0
        public void ContainsTest()
        {
            XYPolygon target = XYPolygon.GetSquare(25);
            IXYPoint  p      = new XYPoint(3, 3);


            Assert.AreEqual(true, target.Contains(p));
            Assert.AreEqual(false, target.Contains(new XYPoint(3, 6)));
            Assert.IsTrue(target.Contains(new XYPoint(0.1, 0.1)));
        }
Esempio n. 3
0
        public void GetSourceWaterTest()
        {
            SinkSourceBoundary target = new SinkSourceBoundary(200);

            target.ContactGeometry = XYPolygon.GetSquare(1);

            IWaterPacket actual = target.GetSourceWater(DateTime.Now, new TimeSpan(1, 0, 0));

            Assert.AreEqual(200 * 3600, actual.Volume);
        }
Esempio n. 4
0
        public void GetSinkVolumesTest()
        {
            SinkSourceBoundary target = new SinkSourceBoundary(-200);

            target.ContactGeometry = XYPolygon.GetSquare(1);
            target.WaterSample     = new WaterPacket(1);

            double actual = target.GetSinkVolume(DateTime.Now, new TimeSpan(1, 0, 0));

            Assert.AreEqual(200 * 3600, actual, 0.000001);
        }
Esempio n. 5
0
        public void EvaporationRateBoundaryTest()
        {
            EvaporationRateBoundary evp = new EvaporationRateBoundary(23);

            evp.ContactGeometry = XYPolygon.GetSquare(2);
            evp.Name            = "Test";
            EvaporationRateBoundary evp2 = (EvaporationRateBoundary)ReadWrite(evp);

            Assert.AreEqual(evp.Name, evp2.Name);
            Assert.AreEqual(((XYPolygon)evp.ContactGeometry).GetArea(), ((XYPolygon)evp.ContactGeometry).GetArea());
            Assert.AreEqual(evp.GetSinkVolume(DateTime.Now, TimeSpan.FromDays(1.5)), evp2.GetSinkVolume(DateTime.Now, TimeSpan.FromDays(1.5)));
        }
Esempio n. 6
0
        public void GroundwaterBoundaryTest()
        {
            Stream stream = new Stream("S", 1, 1, 1);

            stream.WaterLevel = 2;
            GroundWaterBoundary gwb = new GroundWaterBoundary(stream, 2, 4, 5, XYPolygon.GetSquare(23));

            gwb.WaterSample = new WaterPacket(1);

            GroundWaterBoundary gwb2 = (GroundWaterBoundary)ReadWrite(gwb);

            Assert.AreEqual(gwb.IsSource(DateTime.Now), gwb2.IsSource(DateTime.Now));
            WaterEquals(gwb.GetSourceWater(DateTime.Now, TimeSpan.FromDays(1)), gwb2.GetSourceWater(DateTime.Now, TimeSpan.FromDays(1)));
        }
Esempio n. 7
0
        public void LakeTest()
        {
            Lake l = new Lake("L", 10000);

            l.ID = 3;

            GroundWaterBoundary gwb = new GroundWaterBoundary(l, 2, 4, 5, XYPolygon.GetSquare(23));

            gwb.WaterSample = new WaterPacket(1);
            l.GroundwaterBoundaries.Add(gwb);

            Lake l2 = (Lake)ReadWrite(l);

            Assert.AreEqual(l.Volume, l2.Volume);
            Assert.AreEqual(l.ID, l2.ID);
            Assert.AreEqual(l.Area, l2.Area);

            Assert.AreEqual(l.GroundwaterBoundaries.Count, l2.GroundwaterBoundaries.Count);
        }
Esempio n. 8
0
        public void RoutingOfGroundwaterTest()
        {
            Lake S = new Lake("L", 100);

            S.SetState("Initial", DateTime.Now, new WaterPacket(100));

            Lake storage = new Lake("Storage", 10000);

            S.AddDownStreamWaterBody(storage);

            TimeSpan ts = new TimeSpan(1, 0, 0);

            int          Id       = 2;
            IWaterPacket expected = new WaterPacket(Id, 200);
            IWaterPacket actual;

            S.WaterLevel = 8;
            GroundWaterBoundary b = new GroundWaterBoundary(S, 0.001, 100, 10, XYPolygon.GetSquare(2.5));

            b.WaterSample = expected;
            S.GroundwaterBoundaries.Add(b);
            S.Update(S.CurrentTime.Add(ts));

            actual = storage.CurrentStoredWater;
            double ExpectedVolume = b.GetSourceWater(DateTime.Now, ts).Volume;

            Assert.AreEqual(expected.Composition.Keys.First(), actual.Composition.Keys.First());
            Assert.AreEqual(ExpectedVolume, actual.Volume, 0.000001);

            S.Update(S.CurrentTime.Add(new TimeSpan(2, 0, 0)));

            actual = storage.CurrentStoredWater;
            Assert.AreEqual(expected.Composition.Keys.First(), actual.Composition.Keys.First());
            Assert.AreEqual(0.54, actual.Volume, 0.000001);

            S.AddWaterPacket(DateTime.Now, DateTime.Now, expected);
            S.Update(S.CurrentTime.Add(new TimeSpan(2, 0, 0)));
            actual = storage.CurrentStoredWater;

            Assert.AreEqual(200.9, actual.Volume, 0.000001);
        }
Esempio n. 9
0
        public void TestMethod1()
        {
            Lake L = new Lake("Deep lake", XYPolygon.GetSquare(10000));

            L.Depth = 4;
            L.Output.LogAllChemicals = true;

            Lake L2 = new Lake("Shallow lake", XYPolygon.GetSquare(40000));

            L2.Depth = 1;
            L2.Output.LogAllChemicals = true;

            SinkSourceBoundary flow = new SinkSourceBoundary(L.Volume / (15.0 * 86400.0));

            L.Sources.Add(flow);
            L2.Sources.Add(flow);

            Chemical    rn          = ChemicalFactory.Instance.GetChemical(ChemicalNames.Radon);
            Chemical    cl          = ChemicalFactory.Instance.GetChemical(ChemicalNames.Cl);
            WaterPacket groundwater = new WaterPacket(1);

            groundwater.SetConcentration(rn, 200);
            groundwater.SetConcentration(cl, 200);
            SinkSourceBoundary gwflow = new SinkSourceBoundary(L.Volume / (15.0 * 86400.0));

            gwflow.WaterSample = groundwater;

            L.Sources.Add(gwflow);
            L2.Sources.Add(gwflow);

            Model M = new Model();

            M.WaterBodies.Add(L);
            M.WaterBodies.Add(L2);

            DateTime start = new DateTime(2010, 1, 1);

            M.SetState("Initial", start, new WaterPacket(1));
            M.MoveInTime(new DateTime(2010, 12, 31), TimeSpan.FromDays(5));
            M.Save(@"..\..\..\TestData\Radon.xml");
        }
Esempio n. 10
0
        public void RoutingOfGroundwaterTest()
        {
            Stream S = new Stream("S", 100, 1, 1);

            S.SetState("Initial", DateTime.Now, new WaterPacket(100));

            TimeSpan ts = new TimeSpan(0, 1, 0);

            int          Id       = 2;
            IWaterPacket expected = new WaterPacket(Id, 200);
            IWaterPacket actual;

            S.WaterLevel = 8;
            GroundWaterBoundary b = new GroundWaterBoundary(S, 0.001, 10, 100, XYPolygon.GetSquare(250));

            b.WaterSample = expected;
            S.GroundwaterBoundaries.Add(b);
            S.Update(S.CurrentTime.Add(ts));

            actual = S.CurrentStoredWater;
            double ExpectedVolume = b.GetSourceWater(DateTime.Now, ts).Volume;

            Assert.AreEqual(expected.Composition.Keys.First(), actual.Composition.Keys.First());
            Assert.AreEqual(100, actual.Volume, 0.000001);

            S.Update(S.CurrentTime.Add(ts));

            actual = S.CurrentStoredWater;
            Assert.AreEqual(expected.Composition.Keys.First(), actual.Composition.Keys.First());
            Assert.AreEqual(100, actual.Volume, 0.000001);

            S.AddWaterPacket(DateTime.Now, DateTime.Now, expected);
            S.Update(S.CurrentTime.Add(ts));
            actual = S.CurrentStoredWater;

            Assert.AreEqual(100, actual.Volume, 0.000001);
        }
Esempio n. 11
0
        public void KrabbenhoftExample()
        {
            Lake L = new Lake("Sparkling Lake", XYPolygon.GetSquare(0.81e6));

            L.Depth = 8.84e6 / L.Area;
            L.Output.LogAllChemicals = true;

            IsotopeWater LakeWater = new IsotopeWater(1);

            LakeWater.SetIsotopeRatio(5.75);
            TimestampSeries EvapoConcentrations = new TimestampSeries();

            EvapoConcentrations.AddSiValue(new DateTime(1985, 4, 1), 3.95);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 5, 1), 13.9);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 6, 1), 25.24);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 7, 1), 23.97);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 8, 1), 17.13);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 9, 1), 10.40);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 10, 1), 6.12);
            EvapoConcentrations.AddSiValue(new DateTime(1985, 10, 1), 33.24);
            EvapoConcentrations.AllowExtrapolation  = true;
            EvapoConcentrations.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
            LakeWater.EvaporationConcentration      = EvapoConcentrations;

            TimestampSeries PrecipConcentrations = new TimestampSeries();

            PrecipConcentrations.AddSiValue(new DateTime(1985, 1, 1), 22.8);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 2, 1), 22.8);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 3, 1), 22.8);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 4, 1), 14.8);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 5, 1), 10.7);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 6, 1), 6.3);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 7, 1), 5.1);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 8, 1), 8.4);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 9, 1), 11.1);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 10, 1), 13.8);
            PrecipConcentrations.AddSiValue(new DateTime(1985, 10, 1), 21.9);
            PrecipConcentrations.AllowExtrapolation  = true;
            PrecipConcentrations.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;

            TimespanSeries Precipitation = new TimespanSeries();

            Precipitation.Unit = new HydroNumerics.Core.Unit("cm/month", 1.0 / 100.0 / (86400.0 * 30.0), 0);
            Precipitation.AddValue(new DateTime(1985, 1, 1), new DateTime(1985, 3, 1), 0);
            Precipitation.AddValue(new DateTime(1985, 3, 1), new DateTime(1985, 3, 31), 12.5);
            Precipitation.AddValue(new DateTime(1985, 4, 1), new DateTime(1985, 4, 30), 7.1);
            Precipitation.AddValue(new DateTime(1985, 5, 1), new DateTime(1985, 5, 31), 7.6);
            Precipitation.AddValue(new DateTime(1985, 6, 1), new DateTime(1985, 6, 30), 8.8);
            Precipitation.AddValue(new DateTime(1985, 7, 1), new DateTime(1985, 7, 31), 8.6);
            Precipitation.AddValue(new DateTime(1985, 8, 1), new DateTime(1985, 8, 31), 12.7);
            Precipitation.AddValue(new DateTime(1985, 9, 1), new DateTime(1985, 9, 30), 11);
            Precipitation.AddValue(new DateTime(1985, 10, 1), new DateTime(1985, 10, 31), 6.2);
            Precipitation.AddValue(new DateTime(1985, 11, 1), new DateTime(1985, 11, 30), 4.8);
            Precipitation.AddValue(new DateTime(1985, 11, 30), new DateTime(1985, 12, 31), 0);
            Precipitation.AllowExtrapolation  = true;
            Precipitation.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;

            Assert.AreEqual(79, 12 * Precipitation.GetValue(new DateTime(1985, 1, 1), new DateTime(1985, 12, 31)), 3);

            SourceBoundary Precip = new SourceBoundary(Precipitation);

            Precip.WaterSample = new IsotopeWater(1);
            Precip.AddChemicalConcentrationSeries(ChemicalFactory.Instance.GetChemical(ChemicalNames.IsotopeFraction), PrecipConcentrations);

            TimespanSeries Evaporation = new TimespanSeries();

            Evaporation.Unit = new HydroNumerics.Core.Unit("cm/month", 1.0 / 100.0 / (86400.0 * 30.0), 0);
            Evaporation.AddValue(new DateTime(1985, 1, 1), new DateTime(1985, 4, 1), 0);
            Evaporation.AddValue(new DateTime(1985, 4, 1), new DateTime(1985, 4, 30), 2.8);
            Evaporation.AddValue(new DateTime(1985, 5, 1), new DateTime(1985, 5, 31), 7.0);
            Evaporation.AddValue(new DateTime(1985, 6, 1), new DateTime(1985, 6, 30), 10.5);
            Evaporation.AddValue(new DateTime(1985, 7, 1), new DateTime(1985, 7, 31), 11.1);
            Evaporation.AddValue(new DateTime(1985, 8, 1), new DateTime(1985, 8, 31), 10.0);
            Evaporation.AddValue(new DateTime(1985, 9, 1), new DateTime(1985, 9, 30), 7.0);
            Evaporation.AddValue(new DateTime(1985, 10, 1), new DateTime(1985, 10, 31), 4.7);
            Evaporation.AddValue(new DateTime(1985, 11, 1), new DateTime(1985, 11, 30), 0.6);
            Evaporation.AddValue(new DateTime(1985, 11, 30), new DateTime(1985, 12, 31), 0);
            Evaporation.AllowExtrapolation  = true;
            Evaporation.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
            EvaporationRateBoundary erb = new EvaporationRateBoundary(Evaporation);

            Assert.AreEqual(54, 12 * Evaporation.GetValue(new DateTime(1985, 1, 1), new DateTime(1985, 12, 31)), 3);


            GroundWaterBoundary grb = new GroundWaterBoundary(L, 1e-7, 1, 1, (XYPolygon)L.Geometry);

            grb.FlowType  = GWType.Flow;
            grb.WaterFlow = new TimespanSeries();
            grb.WaterFlow.AddSiValue(DateTime.MinValue, DateTime.MaxValue, Evaporation.Unit.ToSiUnit(29 / 12) * L.Area);
            IsotopeWater gwsp25 = new IsotopeWater(1);

            gwsp25.SetIsotopeRatio(11.5);
            grb.WaterSample = gwsp25;

            GroundWaterBoundary gout = new GroundWaterBoundary(L, 1e-7, 1, -1, (XYPolygon)L.Geometry);

            gout.FlowType  = GWType.Flow;
            gout.WaterFlow = new TimespanSeries();
            gout.WaterFlow.AddSiValue(DateTime.MinValue, DateTime.MaxValue, -Evaporation.Unit.ToSiUnit(54 / 12) * L.Area);

            DateTime Start = new DateTime(1985, 1, 1);

            L.Precipitation.Add(Precip);
            Precip.ContactGeometry = L.Geometry;
            L.EvaporationBoundaries.Add(erb);
            erb.ContactGeometry = L.Geometry;
            L.GroundwaterBoundaries.Add(grb);
            L.GroundwaterBoundaries.Add(gout);

            Model M = new Model();

            M.WaterBodies.Add(L);
            M.SetState("Initial", Start, LakeWater);

            L.Depth *= 1.5;
            ((IsotopeWater)L.CurrentStoredWater).CurrentTime = Start;
            M.MoveInTime(new DateTime(1985, 12, 31), TimeSpan.FromDays(10));

            M.Save(@"..\..\..\TestData\Krabbenhoft.xml");
        }
Esempio n. 12
0
        public void SquareTest()
        {
            XYPolygon pol = XYPolygon.GetSquare(25);

            Assert.AreEqual(25, pol.GetArea());
        }
Esempio n. 13
0
        public void GroundWaterTest()
        {
            WaterPacket GroundWater = new WaterPacket(1);

//      GroundWater.AddChemical(ChemicalFactory.Instance.GetChemical(ChemicalNames.Radon), 0.01);
            GroundWater.IDForComposition = 4;

            Lake Vedsted = LakeFactory.GetLake("Vedsted Sø");

            Vedsted.Depth      = 5;
            Vedsted.WaterLevel = 45.7;

            //Create and add a discharge boundary
            TimestampSeries Discharge = new TimestampSeries();

            Discharge.AddSiValue(new DateTime(2007, 3, 12), 6986 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.AddSiValue(new DateTime(2007, 4, 3), 5894 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.AddSiValue(new DateTime(2007, 4, 25), 1205 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.RelaxationFactor   = 1;
            Discharge.AllowExtrapolation = true;
            Assert.AreEqual(Discharge.GetValue(new DateTime(2007, 4, 25)), Discharge.GetValue(new DateTime(2007, 6, 25)), 0.0000001);
            SinkSourceBoundary Kilde = new SinkSourceBoundary(Discharge);

            Kilde.Name = "Small spring";
            Kilde.ID   = 3;
            Kilde.WaterSample.IDForComposition = 3;
            Vedsted.Sources.Add(Kilde);


            Vedsted.Output.LogAllChemicals = true;
            Vedsted.Output.LogComposition  = true;

            //Add to an engine
            Model Engine = new Model();

            Engine.Name = "Vedsted-opsætning";
            Engine._waterBodies.Add(Vedsted);

            //Set initial state
            WaterPacket InitialStateWater = new WaterPacket(1);

            InitialStateWater.IDForComposition = 1;
            DateTime Start = new DateTime(2007, 1, 1);
            DateTime End   = new DateTime(2007, 12, 31);

            Engine.SetState("Initial", Start, InitialStateWater);
            Engine.SimulationEndTime = End;
            Engine.TimeStep          = TimeSpan.FromDays(30);

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 1";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");

            //Create and add precipitation boundary
            TimespanSeries Precipitation = new TimespanSeries();

            Precipitation.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
            Precipitation.AllowExtrapolation  = true;
            double[] values = new double[] { 108, 83, 73, 52, 61, 86, 99, 101, 75, 108, 85, 101 };
            AddMonthlyValues(Precipitation, 2007, values);
            SinkSourceBoundary Precip = new SinkSourceBoundary(Precipitation);

            Precip.ContactGeometry = Vedsted.SurfaceArea;
            Precip.Name            = "Precipitation";
            Precip.ID = 2;
            Precip.WaterSample.IDForComposition = 2;
            Vedsted.Precipitation.Add(Precip);

            //Create and add evaporation boundary
            TimespanSeries Evaporation = new TimespanSeries();

            Evaporation.AllowExtrapolation  = true;
            Evaporation.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
            double[] values2 = new double[] { 4, 11, 34, 66, 110, 118, 122, 103, 61, 26, 7, 1 };
            AddMonthlyValues(Evaporation, 2007, values2);
            EvaporationRateBoundary eva = new EvaporationRateBoundary(Evaporation);

            eva.ContactGeometry = Vedsted.SurfaceArea;
            eva.Name            = "Evapo";

            Vedsted.EvaporationBoundaries.Add(eva);

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 2";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");


            //To be used by other tests
            Engine.Save(testDataPath + "VedstedNoGroundwater.xml");

            XYPolygon ContactArea = XYPolygon.GetSquare(Vedsted.Area / 10);

            #region Groundwater boundaries
            //Add groundwater boundaries
            GroundWaterBoundary B1 = new GroundWaterBoundary(Vedsted, 1.3e-4, 1, 45.47, ContactArea);
            B1.Name        = "B1";
            B1.ID          = 4;
            B1.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B1);

            GroundWaterBoundary B2 = new GroundWaterBoundary(Vedsted, 1e-6, 1, 44.96, ContactArea);
            B2.Name        = "B2";
            B2.ID          = 5;
            B2.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B2);

            GroundWaterBoundary B3 = new GroundWaterBoundary(Vedsted, 2e-6, 1, 44.63, ContactArea);
            B3.Name        = "B3";
            B3.ID          = 6;
            B3.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B3);

            GroundWaterBoundary B4 = new GroundWaterBoundary(Vedsted, 4.9e-7, 1, 44.75, ContactArea);
            B4.Name        = "B4";
            B4.ID          = 7;
            B4.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B4);

            GroundWaterBoundary B5 = new GroundWaterBoundary(Vedsted, 1.5e-8, 1, 44.27, ContactArea);
            B5.Name        = "B5";
            B5.ID          = 8;
            B5.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B5);

            GroundWaterBoundary B6 = new GroundWaterBoundary(Vedsted, 1.5e-8, 1, 44.16, ContactArea);
            B6.Name        = "B6";
            B6.ID          = 9;
            B6.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B6);

            GroundWaterBoundary B7 = new GroundWaterBoundary(Vedsted, 1.1e-6, 1, 45.15, ContactArea);
            B7.Name        = "B7";
            B7.ID          = 10;
            B7.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B7);

            GroundWaterBoundary B8 = new GroundWaterBoundary(Vedsted, 1.1e-6, 1, 44.54, ContactArea);
            B8.Name        = "B8";
            B8.ID          = 11;
            B8.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B8);

            GroundWaterBoundary B9 = new GroundWaterBoundary(Vedsted, 2.1e-8, 1, 45.4, ContactArea);
            B9.Name        = "B9";
            B9.ID          = 12;
            B9.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B9);

            GroundWaterBoundary B10 = new GroundWaterBoundary(Vedsted, 3.5e-6, 1, 45.16, ContactArea);
            B10.Name        = "B10";
            B10.ID          = 13;
            B10.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B10);

            #endregion

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 3";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");

            Vedsted.GroundwaterBoundaries.Clear();

            var cl = ChemicalFactory.Instance.GetChemical(ChemicalNames.IsotopeFraction);

            GroundWaterBoundary Inflow = new GroundWaterBoundary(Vedsted, 1e-7, 1, 46.7, XYPolygon.GetSquare(Vedsted.Area / 2));
            Inflow.Name = "Inflow";
            GroundWater.AddChemical(cl, 3);
            Inflow.WaterSample = GroundWater;

            Vedsted.RealData.AddChemicalTimeSeries(cl);
            Vedsted.RealData.ChemicalConcentrations[cl].AddSiValue(new DateTime(2007, 8, 7), 2.5);

            ((WaterPacket)InitialStateWater).AddChemical(cl, 2.5 * InitialStateWater.Volume);
            Engine.SetState("Initial", Start, InitialStateWater);

            GroundWaterBoundary Outflow = new GroundWaterBoundary(Vedsted, 1e-7, 1, 44.7, XYPolygon.GetSquare(Vedsted.Area / 2));
            Outflow.Name = "Outflow";

            Vedsted.GroundwaterBoundaries.Add(Inflow);
            Vedsted.GroundwaterBoundaries.Add(Outflow);

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 4";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");



            #region ////Add seepage meter boundaries
            //GroundWaterBoundary S1 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(S1);
            //GroundWaterBoundary S2 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(S2);
            //GroundWaterBoundary S3 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(S3);
            //GroundWaterBoundary I1 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(I1);
            //GroundWaterBoundary I2 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(I2);
            //GroundWaterBoundary I3 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(I3);

            #endregion


            Assert.AreEqual(Evaporation.EndTime, Engine.MaximumEndTime);
            Engine.Save(testDataPath + "Vedsted.xml");

            Engine.MoveInTime(End, TimeSpan.FromDays(30));

            double outflow2 = Vedsted.Output.Outflow.GetValue(Start, End.Subtract(TimeSpan.FromDays(5)));
            double evapo2   = Vedsted.Output.Evaporation.GetValue(Start, End.Subtract(TimeSpan.FromDays(5)));

            Engine.Save(testDataPath + "Vedsted2.xml");
        }
Esempio n. 14
0
        public void TracerTest()
        {
            int      count  = 3;
            double   length = 10870;
            DateTime Start  = new DateTime(2000, 1, 1);

            List <Lake> lakes = NetworkBuilder.CreateConnectedLakes(count);

            foreach (Lake L in lakes)
            {
                L.SurfaceArea = XYPolygon.GetSquare(length / count);
                L.Depth       = 1;
                L.SetState("Initial", Start, new WaterPacket(L.Volume));
            }
            Chemical c = ChemicalFactory.Instance.GetChemical(ChemicalNames.Cl);

            SinkSourceBoundary fb = new SinkSourceBoundary(10870.0 / (8.49 * 3600));

            fb.WaterSample = new WaterPacket(1);
            lakes.First().Sources.Add(fb);

            WaterPacket plug = new WaterPacket(1);

            plug.AddChemical(c, 10000);
            lakes.First().AddWaterPacket(Start, Start.AddHours(1), plug.DeepClone());

            lakes.First().Output.LogChemicalConcentration(c);

            lakes.Last().Output.LogChemicalConcentration(c);


            Stream us = new Stream("us", 1, 1, 1);

            us.Sources.Add(fb);
            Stream s = new Stream("s", 1000, 1, 1);

            Lake L2 = new Lake("L2", 870);

            Stream s1 = new Stream("s1", 9000, 1, 1);

            s.AddWaterPacket(Start, Start.AddSeconds(1), plug.DeepClone());
            s1.Output.LogChemicalConcentration(c);

            us.AddDownStreamWaterBody(s);
            s.AddDownStreamWaterBody(L2);
            L2.AddDownStreamWaterBody(s1);


            Model m = new Model();

            m._waterBodies.AddRange(lakes.Cast <IWaterBody>());

            m._waterBodies.Add((IWaterBody)us);
            m._waterBodies.Add((IWaterBody)s);
            m._waterBodies.Add((IWaterBody)L2);
            m._waterBodies.Add((IWaterBody)s1);

            m.SetState("Initial", Start, new WaterPacket(1));



            m.MoveInTime(Start.AddHours(15), TimeSpan.FromMinutes(1));

            lakes.Last().Output.Save(@"C:\temp\LastLake.xts");
            s1.Output.Save(@"C:\temp\Stream.xts");


            int n = 15;
            List <IWaterBody> wbs = NetworkBuilder.CreateCombo(n, 10870 / n / 2.0);

            foreach (IWaterBody wb in wbs)
            {
                wb.SetState("Initial", Start, new WaterPacket(wb.Volume));
            }

            wbs.First().AddWaterPacket(Start, Start.AddHours(1), plug.DeepClone());
            us.AddDownStreamWaterBody(wbs.First());
            us.RestoreState("Initial");

            m._waterBodies.Clear();
            m._waterBodies.Add(us);
            m._waterBodies.AddRange(wbs);

            m.SetState("Initial", Start, new WaterPacket(1));

            ((Stream)wbs.Last()).Output.LogChemicalConcentration(c);

            m.MoveInTime(Start.AddHours(15), TimeSpan.FromMinutes(1));

            ((Stream)wbs.Last()).Output.Save(@"C:\temp\Stream.xts");
        }
 public void MyTestInitialize()
 {
     hydraulicConductivity = 0.0001; //m/s
     area               = 2.5;       //m2
     distance           = 34;        //m
     head               = 22;        // m
     s                  = new Lake("s", 100);
     target             = new GroundWaterBoundary(s, hydraulicConductivity, distance, head, XYPolygon.GetSquare(2.5));
     target.WaterSample = new WaterPacket(1, 150);
 }
Esempio n. 16
0
        public void TestMethod1()
        {
            Lake Gjeller = LakeFactory.GetLake("Gjeller Sø");

            Gjeller.Depth      = 1.2;
            Gjeller.WaterLevel = 0.4;

            WaterPacket GjellerWater = new WaterPacket(1, 1);

            GjellerWater.AddChemical(ChemicalFactory.Instance.GetChemical(ChemicalNames.Cl), 1);

            TimeSeriesGroup climate = TimeSeriesGroupFactory.Create("climate.xts");

            foreach (var I in climate.Items)
            {
                I.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
                I.AllowExtrapolation  = true;
            }

            EvaporationRateBoundary evap = new EvaporationRateBoundary((TimespanSeries)climate.Items[1]);

            evap.ContactGeometry = Gjeller.Geometry;
            Gjeller.EvaporationBoundaries.Add(evap);

            SinkSourceBoundary precip = new SinkSourceBoundary(climate.Items[0]);

            precip.ContactGeometry = Gjeller.Geometry;
            Gjeller.Precipitation.Add(precip);
            precip.ID          = 2;
            precip.WaterSample = GjellerWater.DeepClone();
            precip.WaterSample.IDForComposition = precip.ID;;

            GroundWaterBoundary GWIN = new GroundWaterBoundary(Gjeller, 1e-5, 2, 0.45, XYPolygon.GetSquare(Gjeller.Area / 2));

            GWIN.WaterSample = GjellerWater.DeepClone();
            GWIN.ID          = 3;
            GWIN.WaterSample.IDForComposition = GWIN.ID;
            GWIN.Name = "Inflow";
            Gjeller.GroundwaterBoundaries.Add(GWIN);

            GroundWaterBoundary GWout = new GroundWaterBoundary(Gjeller, 1e-5, 2, 0.35, XYPolygon.GetSquare(Gjeller.Area / 2));

            GWout.Name = "Outflow";
            Gjeller.GroundwaterBoundaries.Add(GWout);


            TimespanSeries pumping = new TimespanSeries();

            pumping.AddSiValue(new DateTime(1990, 01, 01), new DateTime(2010, 01, 01), 0);
            pumping.AddSiValue(new DateTime(2010, 01, 01), new DateTime(2010, 05, 01), 0.05);
            pumping.AddSiValue(new DateTime(2010, 05, 01), DateTime.Now, 0);


            SinkSourceBoundary DrainageWater = new SinkSourceBoundary(pumping);

            DrainageWater.ID          = 4;
            DrainageWater.WaterSample = GjellerWater.DeepClone();
            DrainageWater.WaterSample.IDForComposition = DrainageWater.ID;
            DrainageWater.Name = "Indpumpet Drænvand";
            Gjeller.Sources.Add(DrainageWater);


            var tsg = TimeSeriesGroupFactory.Create(@"..\..\..\TestData\GjellerObservations.xts");

            foreach (var ts in tsg.Items)
            {
                Chemical c = new Chemical(ts.Name, 1);
                Gjeller.RealData.AddChemicalTimeSeries(c);
                Gjeller.RealData.ChemicalConcentrations[c] = (TimestampSeries)ts;
            }

            Model M = new Model();

            M._waterBodies.Add(Gjeller);
            Gjeller.Output.LogAllChemicals = true;
            Gjeller.Output.LogComposition  = true;

            M.SetState("Initial", new DateTime(1995, 1, 1), GjellerWater);


            M.MoveInTime(DateTime.Now, TimeSpan.FromDays(10));
            M.Save(@"..\..\..\TestData\Gjeller.xml");
        }
 private EvaporationRateBoundary()
 {
     ContactGeometry = XYPolygon.GetSquare(1);
 }
Esempio n. 18
0
 public SinkSourceBoundary()
 {
     WaterSample     = new WaterPacket(1);
     ContactGeometry = XYPolygon.GetSquare(1);
 }
Esempio n. 19
0
        public void Vedsted3()
        {
            WaterPacket GroundWater = new WaterPacket(1);

            GroundWater.AddChemical(ChemicalFactory.Instance.GetChemical(ChemicalNames.Radon), 0.01);

            Model m       = ModelFactory.GetModel(testDataPath + "VedstedNoGroundwater.xml");
            Lake  Vedsted = (Lake)m._waterBodies[0];

            Vedsted.Precipitation.First().WaterSample.IDForComposition = 2;
            Vedsted.Sources.First().WaterSample.IDForComposition = 3;

            GroundWaterBoundary Inflow = new GroundWaterBoundary(Vedsted, 1e-6, 1, 46.7, XYPolygon.GetSquare(Vedsted.Area / 2));

            Inflow.Name        = "Inflow";
            Inflow.ID          = 4;
            Inflow.WaterSample = GroundWater;
            Inflow.WaterSample.IDForComposition = 4;

            GroundWaterBoundary Outflow = new GroundWaterBoundary(Vedsted, 1e-6, 1, 44.7, XYPolygon.GetSquare(Vedsted.Area / 2));

            Outflow.Name        = "Outflow";
            Outflow.ID          = 5;
            Outflow.WaterSample = GroundWater;

            Vedsted.GroundwaterBoundaries.Add(Inflow);
            Vedsted.GroundwaterBoundaries.Add(Outflow);

            DateTime End = new DateTime(2009, 12, 31);

            m.MoveInTime(End, TimeSpan.FromDays(30));

            ModelFactory.SaveModel(testDataPath + "Vedsted3.xml", m);
        }
Esempio n. 20
0
        public void TestMethod1()
        {
            Model M = new Model();

            M.Name = "Cook";

            WaterPacket HyporhericWater = new WaterPacket(1);

            HyporhericWater.AddChemical(ChemicalFactory.Instance.GetChemical(ChemicalNames.Radon), 0.6 / HyporhericWater.Volume);

            for (int i = 0; i < 10; i++)
            {
                Lake s1 = new Lake("s" + i, XYPolygon.GetSquare(50 * 2));
                s1.Depth = 0.3;
                StagnantExchangeBoundary seb = new StagnantExchangeBoundary(s1.Volume / 20000);
                seb.WaterSample            = HyporhericWater.DeepClone(s1.Area * 0.2 * 0.4);
                seb.Output.LogAllChemicals = true;
                s1.Output.LogAllChemicals  = true;
                s1.Sinks.Add(seb);
                s1.Sources.Add(seb);
                if (i > 0)
                {
                    M._waterBodies[i - 1].AddDownStreamWaterBody(s1);
                }

                M._waterBodies.Add(s1);
            }

            //Bromide injection
            TimespanSeries ts = new TimespanSeries();

            ts.AddSiValue(DateTime.MinValue, new DateTime(2005, 10, 18, 12, 0, 0), 0);
            ts.AddSiValue(new DateTime(2005, 10, 18, 12, 0, 0), new DateTime(2005, 10, 18, 12, 40, 0), 0.001 * 60);
            ts.AddSiValue(new DateTime(2005, 10, 18, 12, 40, 0), DateTime.MaxValue, 0);
            SinkSourceBoundary Bromide = new SinkSourceBoundary(ts);
            WaterPacket        P       = new WaterPacket(1);

            P.AddChemical(new Chemical("Bromide", 1), 1.13);
            Bromide.WaterSample = P;

            //SF6 injection
            TimespanSeries ts2 = new TimespanSeries();

            ts2.AddSiValue(DateTime.MinValue, new DateTime(2005, 10, 15, 12, 0, 0), 0);
            ts2.AddSiValue(new DateTime(2005, 10, 15, 12, 0, 0), new DateTime(2005, 10, 19, 12, 0, 0), 1e-6);
            ts2.AddSiValue(new DateTime(2005, 10, 19, 12, 0, 0), DateTime.MaxValue, 0);
            SinkSourceBoundary SF6  = new SinkSourceBoundary(ts2);
            WaterPacket        SF6w = new WaterPacket(1);

            SF6w.AddChemical(new Chemical("SF6", 1), 1.13);
            SF6.WaterSample = SF6w;

            M._waterBodies.First().Sources.Add(Bromide);
            M._waterBodies.First().Sources.Add(SF6);
            M._waterBodies.First().Sources.Add(new SinkSourceBoundary(0.2));

            DateTime Start = new DateTime(2005, 10, 13);
            DateTime End   = new DateTime(2005, 10, 19);

            M.SetState("Initial", Start, new WaterPacket(1));

            M.MoveInTime(new DateTime(2005, 10, 18, 12, 0, 0), TimeSpan.FromHours(2));
            M.MoveInTime(new DateTime(2005, 10, 18, 13, 0, 0), TimeSpan.FromHours(0.02));
            M.MoveInTime(End, TimeSpan.FromHours(2));
            M.Save(@"..\..\..\TestData\CookEtAl.xml");

            M.RestoreState("Initial");
            TimespanSeries ts3 = new TimespanSeries();

            ts3.AddSiValue(DateTime.MinValue, new DateTime(2005, 10, 16, 12, 0, 0), 0);
            ts3.AddSiValue(new DateTime(2005, 10, 16, 12, 0, 0), new DateTime(2005, 10, 17, 0, 0, 0), 0.4);
            ts3.AddSiValue(new DateTime(2005, 10, 17, 0, 0, 0), DateTime.MaxValue, 0);
            M._waterBodies.First().Sources.Add(new SinkSourceBoundary(ts3));
            M.MoveInTime(new DateTime(2005, 10, 18, 12, 0, 0), TimeSpan.FromHours(2));
            M.MoveInTime(new DateTime(2005, 10, 18, 13, 0, 0), TimeSpan.FromHours(0.02));
            M.MoveInTime(End, TimeSpan.FromHours(2));
            M.Save(@"..\..\..\TestData\CookEtAl2.xml");
        }