/// <summary>
        /// Perform the mutation operation
        /// </summary>
        /// <param name="probability">Mutation probability</param>
        /// <param name="solution">The solution to mutate</param>
        private void DoMutation(double probability, Solution solution)
        {
            XReal x = new XReal(solution);

            for (int var = 0; var < solution.Variable.Length; var++)
            {
                if (JMetalRandom.NextDouble() < probability)
                {
                    double rand = JMetalRandom.NextDouble();
                    double tmp;

                    if (rand <= 0.5)
                    {
                        tmp  = Delta(x.GetUpperBound(var) - x.GetValue(var), perturbation.Value);
                        tmp += x.GetValue(var);
                    }
                    else
                    {
                        tmp  = Delta(x.GetLowerBound(var) - x.GetValue(var), perturbation.Value);
                        tmp += x.GetValue(var);
                    }

                    if (tmp < x.GetLowerBound(var))
                    {
                        tmp = x.GetLowerBound(var);
                    }
                    else if (tmp > x.GetUpperBound(var))
                    {
                        tmp = x.GetUpperBound(var);
                    }

                    x.SetValue(var, tmp);
                }
            }
        }
Esempio n. 2
0
        private Solution DoMutation(double probability, Solution parent)
        {
            Solution current = new Solution(parent);

            Solution child;

            child = new Solution(current);

            XReal xCurrent = new XReal(current);
            XReal xChild   = new XReal(child);

            int numberOfVariables = xCurrent.GetNumberOfDecisionVariables();

            randStdNormal = new double[numberOfVariables];

            for (int j = 0; j < numberOfVariables; j++)
            {
                double value;
                //    value = xParent2.GetValue(j) + f * (xParent0.GetValue(j) - xParent1.GetValue(j));

                double u1 = JMetalRandom.NextDouble(0, 1);
                double u2 = JMetalRandom.NextDouble(0, 1);
                if (JMetalRandom.NextDouble() <= probability)
                {
                    randStdNormal[j] = Math.Sqrt(-2.0 * Math.Log(u1)) * Math.Sin(2.0 * Math.PI * u2); //random normal(0,1)
                    value            = xCurrent.GetValue(j) + zeta * xCurrent.GetStdDev(j) * randStdNormal[j];

                    if (value < xChild.GetLowerBound(j))
                    {
                        value = xChild.GetLowerBound(j);
                        //value = JMetalRandom.NextDouble(xChild.GetLowerBound(j), xChild.GetUpperBound(j));
                    }
                    if (value > xChild.GetUpperBound(j))
                    {
                        value = xChild.GetUpperBound(j);
                        //value = JMetalRandom.NextDouble(xChild.GetLowerBound(j), xChild.GetUpperBound(j));
                    }

                    xChild.SetValue(j, value);
                }
            }
            return(child);
        }
Esempio n. 3
0
        /// <summary>
        /// DoMutation method
        /// </summary>
        /// <param name="realProbability"></param>
        /// <param name="binaryProbability"></param>
        /// <param name="solution"></param>
        private void DoMutation(double realProbability, double binaryProbability, Solution solution)
        {
            double rnd, delta1, delta2, mut_pow, deltaq;
            double y, yl, yu, val, xy;

            XReal x = new XReal(solution);

            Binary binaryVariable = (Binary)solution.Variable[1];

            // Polynomial mutation applied to the array real
            for (int var = 0; var < x.Size(); var++)
            {
                if (JMetalRandom.NextDouble() <= realProbability)
                {
                    y       = x.GetValue(var);
                    yl      = x.GetLowerBound(var);
                    yu      = x.GetUpperBound(var);
                    delta1  = (y - yl) / (yu - yl);
                    delta2  = (yu - y) / (yu - yl);
                    rnd     = JMetalRandom.NextDouble();
                    mut_pow = 1.0 / (eta_m + 1.0);
                    if (rnd <= 0.5)
                    {
                        xy     = 1.0 - delta1;
                        val    = 2.0 * rnd + (1.0 - 2.0 * rnd) * (Math.Pow(xy, (distributionIndex + 1.0)));
                        deltaq = Math.Pow(val, mut_pow) - 1.0;
                    }
                    else
                    {
                        xy     = 1.0 - delta2;
                        val    = 2.0 * (1.0 - rnd) + 2.0 * (rnd - 0.5) * (Math.Pow(xy, (distributionIndex + 1.0)));
                        deltaq = 1.0 - (Math.Pow(val, mut_pow));
                    }
                    y = y + deltaq * (yu - yl);
                    if (y < yl)
                    {
                        y = yl;
                    }
                    if (y > yu)
                    {
                        y = yu;
                    }
                    x.SetValue(var, y);
                }
            }

            // BitFlip mutation applied to the binary part
            for (int i = 0; i < binaryVariable.NumberOfBits; i++)
            {
                if (JMetalRandom.NextDouble() < binaryProbability)
                {
                    binaryVariable.Bits.Flip(i);
                }
            }
        }
        /// <summary>
        /// Perform the mutation operation
        /// </summary>
        /// <param name="probability">Mutation probability</param>
        /// <param name="solution">The solution to mutate</param>
        private void DoMutation(Solution solution)
        {
            double rnd, delta1, delta2, mut_pow, deltaq;
            double y, yl, yu, val, xy;

            mutationProbability = mutationProbability - solution.NumberofReplace * 0.001;
            if (mutationProbability <= 0.1)
            {
                mutationProbability = 0.1;
            }

            XReal x = new XReal(solution);

            for (int var = 0; var < solution.NumberOfVariables(); var++)
            {
                if (JMetalRandom.NextDouble() <= mutationProbability)
                {
                    y       = x.GetValue(var);
                    yl      = x.GetLowerBound(var);
                    yu      = x.GetUpperBound(var);
                    delta1  = (y - yl) / (yu - yl);
                    delta2  = (yu - y) / (yu - yl);
                    rnd     = JMetalRandom.NextDouble();
                    mut_pow = 1.0 / (eta_m + 1.0);
                    if (rnd <= 0.5)
                    {
                        xy     = 1.0 - delta1;
                        val    = 2.0 * rnd + (1.0 - 2.0 * rnd) * (Math.Pow(xy, (distributionIndex + 1.0)));
                        deltaq = Math.Pow(val, mut_pow) - 1.0;
                    }
                    else
                    {
                        xy     = 1.0 - delta2;
                        val    = 2.0 * (1.0 - rnd) + 2.0 * (rnd - 0.5) * (Math.Pow(xy, (distributionIndex + 1.0)));
                        deltaq = 1.0 - (Math.Pow(val, mut_pow));
                    }
                    y = y + deltaq * (yu - yl);
                    if (y < yl)
                    {
                        y = yl;
                    }
                    if (y > yu)
                    {
                        y = yu;
                    }
                    x.SetValue(var, y);
                }
            }
        }
Esempio n. 5
0
        /// <summary>
        /// Perform the mutation operation
        /// </summary>
        /// <param name="probability">Mutation probability</param>
        /// <param name="solution">The solution to mutate</param>
        private void DoMutation(double probability, Solution solution)
        {
            XReal v = new XReal(solution);

            try
            {
                if ((solution.Type.GetType() == typeof(BinarySolutionType)) ||
                    (solution.Type.GetType() == typeof(BinaryRealSolutionType)))
                {
                    for (int i = 0; i < solution.Variable.Length; i++)
                    {
                        for (int j = 0; j < ((Binary)solution.Variable[i]).NumberOfBits; j++)
                        {
                            if (JMetalRandom.NextDouble() < probability)
                            {
                                ((Binary)solution.Variable[i]).Bits.Flip(j);
                            }
                        }
                    }

                    for (int i = 0; i < solution.Variable.Length; i++)
                    {
                        ((Binary)solution.Variable[i]).Decode();
                    }
                }
                else
                {                 // Integer representation
                    for (int i = 0; i < solution.Variable.Length; i++)
                    {
                        if (JMetalRandom.NextDouble() < probability)
                        {
                            int value = JMetalRandom.Next(
                                (int)v.GetLowerBound(i),
                                (int)v.GetUpperBound(i));
                            v.SetValue(i, value);
                        }
                    }
                }
            }
            catch (Exception ex)
            {
                Logger.Log.Error("Error in " + this.GetType().FullName + ".DoMutation()", ex);
                Console.WriteLine("Error in " + this.GetType().FullName + ".DoMutation()");
                throw new Exception("Exception in " + this.GetType().FullName + ".DoMutation()");
            }
        }
Esempio n. 6
0
        /// <summary>
        /// Perform the crossover operation.
        /// </summary>
        /// <param name="probability">Crossover probability</param>
        /// <param name="parent1">The first parent</param>
        /// <param name="parent2">The second parent</param>
        /// <returns>An array containing the two offsprings</returns>
        private Solution[] DoCrossover(double probability, Solution parent1, Solution parent2)
        {
            Solution[] offSpring = new Solution[2];

            offSpring[0] = new Solution(parent1);
            offSpring[1] = new Solution(parent2);

            int    i;
            double rand;
            double y1, y2, yL, yu;
            double c1, c2;
            double alpha, beta, betaq;
            double valueX1, valueX2;
            XReal  x1    = new XReal(parent1);
            XReal  x2    = new XReal(parent2);
            XReal  offs1 = new XReal(offSpring[0]);
            XReal  offs2 = new XReal(offSpring[1]);

            int numberOfVariables = x1.GetNumberOfDecisionVariables();

            if (JMetalRandom.NextDouble() <= probability)
            {
                for (i = 0; i < numberOfVariables; i++)
                {
                    valueX1 = x1.GetValue(i);
                    valueX2 = x2.GetValue(i);
                    if (JMetalRandom.NextDouble() <= 0.5)
                    {
                        if (Math.Abs(valueX1 - valueX2) > EPS)
                        {
                            if (valueX1 < valueX2)
                            {
                                y1 = valueX1;
                                y2 = valueX2;
                            }
                            else
                            {
                                y1 = valueX2;
                                y2 = valueX1;
                            }

                            yL    = x1.GetLowerBound(i);
                            yu    = x1.GetUpperBound(i);
                            rand  = JMetalRandom.NextDouble();
                            beta  = 1.0 + (2.0 * (y1 - yL) / (y2 - y1));
                            alpha = 2.0 - Math.Pow(beta, -(distributionIndex + 1.0));

                            if (rand <= (1.0 / alpha))
                            {
                                betaq = Math.Pow((rand * alpha), (1.0 / (distributionIndex + 1.0)));
                            }
                            else
                            {
                                betaq = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (distributionIndex + 1.0)));
                            }

                            c1    = 0.5 * ((y1 + y2) - betaq * (y2 - y1));
                            beta  = 1.0 + (2.0 * (yu - y2) / (y2 - y1));
                            alpha = 2.0 - Math.Pow(beta, -(distributionIndex + 1.0));

                            if (rand <= (1.0 / alpha))
                            {
                                betaq = Math.Pow((rand * alpha), (1.0 / (distributionIndex + 1.0)));
                            }
                            else
                            {
                                betaq = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (distributionIndex + 1.0)));
                            }

                            c2 = 0.5 * ((y1 + y2) + betaq * (y2 - y1));

                            if (c1 < yL)
                            {
                                c1 = yL;
                            }

                            if (c2 < yL)
                            {
                                c2 = yL;
                            }

                            if (c1 > yu)
                            {
                                c1 = yu;
                            }

                            if (c2 > yu)
                            {
                                c2 = yu;
                            }

                            if (JMetalRandom.NextDouble() <= 0.5)
                            {
                                offs1.SetValue(i, c2);
                                offs2.SetValue(i, c1);
                            }
                            else
                            {
                                offs1.SetValue(i, c1);
                                offs2.SetValue(i, c2);
                            }
                        }
                        else
                        {
                            offs1.SetValue(i, valueX1);
                            offs2.SetValue(i, valueX2);
                        }
                    }
                    else
                    {
                        offs1.SetValue(i, valueX2);
                        offs2.SetValue(i, valueX1);
                    }
                }
            }

            return(offSpring);
        }
Esempio n. 7
0
        private IntergenSolution[] DoCrossover(double probability, IntergenSolution parent1, IntergenSolution parent2)
        {
            IntergenSolution[] offSpring = new IntergenSolution[2];

            offSpring[0] = new IntergenSolution(parent1);
            offSpring[1] = new IntergenSolution(parent2);

            int    i;
            double rand;
            double y1, y2, yL, yu;
            double c1, c2;
            double alpha, beta, betaq;
            double valueX1, valueX2;
            XReal  x1    = new XReal(parent1);
            XReal  x2    = new XReal(parent2);
            XReal  offs1 = new XReal(offSpring[0]);
            XReal  offs2 = new XReal(offSpring[1]);

            int numberOfVariables = x1.GetNumberOfDecisionVariables();

            if (JMetalRandom.NextDouble() <= probability)
            {
                for (i = 0; i < numberOfVariables; i++)
                {
                    valueX1 = x1.GetValue(i);
                    valueX2 = x2.GetValue(i);


                    if (JMetalRandom.NextDouble() <= 0.5)
                    {
                        if (Math.Abs(valueX1 - valueX2) > EPS)
                        {
                            if (valueX1 < valueX2)
                            {
                                y1 = valueX1;
                                y2 = valueX2;
                            }
                            else
                            {
                                y1 = valueX2;
                                y2 = valueX1;
                            }

                            yL   = x1.GetLowerBound(i);
                            yu   = x1.GetUpperBound(i);
                            rand = JMetalRandom.NextDouble();


                            beta = 1.0 + (2.0 * (y1 - yL) / (y2 - y1));
                            //Console.WriteLine("Beta1" + beta);
                            alpha = 2.0 - Math.Pow(beta, -(distributionIndex + 1.0));

                            if (rand <= (1.0 / alpha))
                            {
                                betaq = Math.Pow((rand * alpha), (1.0 / (distributionIndex + 1.0)));

                                /* if (double.IsNaN(betaq))
                                 * {
                                 *   Console.WriteLine("NAN BETAq");
                                 * } */
                            }
                            else
                            {
                                betaq = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (distributionIndex + 1.0)));

                                /* var betax = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (distributionIndex + 1.0)));
                                 * if (double.IsNaN(betax))
                                 * {
                                 *   Console.WriteLine("NAN BETAx");
                                 * }
                                 * if (double.IsNaN(betaq))
                                 * {
                                 *   Console.WriteLine("NAN BETAq");
                                 * }
                                 */
                            }

                            /*
                             * if (double.IsNaN(betaq))
                             * {
                             *  Console.WriteLine("NAN BETAq");
                             * } */
                            c1    = 0.5 * ((y1 + y2) - betaq * (y2 - y1));
                            beta  = 1.0 + (2.0 * (yu - y2) / (y2 - y1));
                            alpha = 2.0 - Math.Pow(beta, -(distributionIndex + 1.0));

                            if (rand <= (1.0 / alpha))
                            {
                                betaq = Math.Pow((rand * alpha), (1.0 / (distributionIndex + 1.0)));

                                /*if (double.IsNaN(betaq))
                                 * {
                                 *  Console.WriteLine("NAN BETAq");
                                 * } */
                            }
                            else
                            {
                                betaq = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (distributionIndex + 1.0)));

                                /*if (double.IsNaN(betaq))
                                 * {
                                 *  Console.WriteLine("NAN BETAq");
                                 * }*/
                            }

                            c2 = 0.5 * ((y1 + y2) + betaq * (y2 - y1));

                            if (c1 < yL)
                            {
                                c1 = yL;
                            }

                            if (c2 < yL)
                            {
                                c2 = yL;
                            }

                            if (c1 > yu)
                            {
                                c1 = yu;
                            }

                            if (c2 > yu)
                            {
                                c2 = yu;
                            }

                            /*if (double.IsNaN(c2) || double.IsNaN(c1))
                             * {
                             *  Console.WriteLine("Setting NAN");
                             * } */

                            if (JMetalRandom.NextDouble() <= 0.5)
                            {
                                offs1.SetValue(i, c2);
                                offs2.SetValue(i, c1);
                            }
                            else
                            {
                                offs1.SetValue(i, c1);
                                offs2.SetValue(i, c2);
                            }
                        }
                        else
                        {
                            offs1.SetValue(i, valueX1);
                            offs2.SetValue(i, valueX2);
                        }
                    }
                    else
                    {
                        offs1.SetValue(i, valueX2);
                        offs2.SetValue(i, valueX1);
                    }
                }
            }



            /*
             * var o1 = offSpring[0];
             * XReal values = new XReal(o1);
             * for (int u = 0; u < values.Size(); u++)
             * {
             *
             *  if (double.IsNaN(values.GetValue(u)))
             *  {
             *
             *      Console.WriteLine("crossover NAN1");
             *  }
             * }
             *
             * var s = offSpring[1];
             * XReal values2 = new XReal(s);
             * for (int u = 0; u < values2.Size(); u++)
             * {
             *  if (double.IsNaN(values2.GetValue(u)))
             *  {
             *      Console.WriteLine("crossover NAN2");
             *  }
             * } */

            return(offSpring);
        }
        /// <summary>
        /// Executes the operation
        /// </summary>
        /// <param name="obj">An object containing an array of three parents</param>
        /// <returns>An object containing the offSprings</returns>
        public override object Execute(object obj)
        {
            object[] parameters = (object[])obj;
            Solution current    = (Solution)parameters[0];

            Solution[] parent = (Solution[])parameters[1];

            Solution child;

            if (!(VALID_TYPES.Contains(parent[0].Type.GetType()) &&
                  VALID_TYPES.Contains(parent[1].Type.GetType()) &&
                  VALID_TYPES.Contains(parent[2].Type.GetType())))
            {
                Logger.Log.Error("Exception in " + this.GetType().FullName + ".Execute()");
                throw new Exception("Exception in " + this.GetType().FullName + ".Execute()");
            }

            int jrand;

            child = new Solution(current);

            XReal xParent0 = new XReal(parent[0]);
            XReal xParent1 = new XReal(parent[1]);
            XReal xParent2 = new XReal(parent[2]);
            XReal xCurrent = new XReal(current);
            XReal xChild   = new XReal(child);

            int numberOfVariables = xParent0.GetNumberOfDecisionVariables();

            jrand = JMetalRandom.Next(0, numberOfVariables - 1);

            // STEP 4. Checking the DE variant
            if ((deVariant == "rand/1/bin") || (deVariant == "best/1/bin"))
            {
                for (int j = 0; j < numberOfVariables; j++)
                {
                    if (JMetalRandom.NextDouble(0, 1) < cr || j == jrand)
                    {
                        double value;
                        value = xParent2.GetValue(j) + f * (xParent0.GetValue(j) - xParent1.GetValue(j));

                        if (value < xChild.GetLowerBound(j))
                        {
                            value = xChild.GetLowerBound(j);
                        }
                        if (value > xChild.GetUpperBound(j))
                        {
                            value = xChild.GetUpperBound(j);
                        }

                        xChild.SetValue(j, value);
                    }
                    else
                    {
                        double value;
                        value = xCurrent.GetValue(j);
                        xChild.SetValue(j, value);
                    }
                }
            }
            else if ((deVariant == "rand/1/exp") || (deVariant == "best/1/exp"))
            {
                for (int j = 0; j < numberOfVariables; j++)
                {
                    if (JMetalRandom.NextDouble(0, 1) < cr || j == jrand)
                    {
                        double value;
                        value = xParent2.GetValue(j) + f * (xParent0.GetValue(j) - xParent1.GetValue(j));

                        if (value < xChild.GetLowerBound(j))
                        {
                            value = xChild.GetLowerBound(j);
                        }
                        if (value > xChild.GetUpperBound(j))
                        {
                            value = xChild.GetUpperBound(j);
                        }

                        xChild.SetValue(j, value);
                    }
                    else
                    {
                        cr = 0;
                        double value;
                        value = xCurrent.GetValue(j);
                        xChild.SetValue(j, value);
                    }
                }
            }
            else if ((deVariant == "current-to-rand/1") || (deVariant == "current-to-best/1"))
            {
                for (int j = 0; j < numberOfVariables; j++)
                {
                    double value;
                    value = xCurrent.GetValue(j) + k * (xParent2.GetValue(j)
                                                        - xCurrent.GetValue(j))
                            + f * (xParent0.GetValue(j) - xParent1.GetValue(j));

                    if (value < xChild.GetLowerBound(j))
                    {
                        value = xChild.GetLowerBound(j);
                    }
                    if (value > xChild.GetUpperBound(j))
                    {
                        value = xChild.GetUpperBound(j);
                    }

                    xChild.SetValue(j, value);
                }
            }
            else if ((deVariant == "current-to-rand/1/bin") || (deVariant == "current-to-best/1/bin"))
            {
                for (int j = 0; j < numberOfVariables; j++)
                {
                    if (JMetalRandom.NextDouble(0, 1) < cr || j == jrand)
                    {
                        double value;
                        value = xCurrent.GetValue(j) + k * (xParent2.GetValue(j)
                                                            - xCurrent.GetValue(j))
                                + f * (xParent0.GetValue(j) - xParent1.GetValue(j));

                        if (value < xChild.GetLowerBound(j))
                        {
                            value = xChild.GetLowerBound(j);
                        }
                        if (value > xChild.GetUpperBound(j))
                        {
                            value = xChild.GetUpperBound(j);
                        }

                        xChild.SetValue(j, value);
                    }
                    else
                    {
                        double value;
                        value = xCurrent.GetValue(j);
                        xChild.SetValue(j, value);
                    }
                }
            }
            else if ((deVariant == "current-to-rand/1/exp") || (deVariant == "current-to-best/1/exp"))
            {
                for (int j = 0; j < numberOfVariables; j++)
                {
                    if (JMetalRandom.NextDouble(0, 1) < cr || j == jrand)
                    {
                        double value;
                        value = xCurrent.GetValue(j) + k * (xParent2.GetValue(j)
                                                            - xCurrent.GetValue(j))
                                + f * (xParent0.GetValue(j) - xParent1.GetValue(j));

                        if (value < xChild.GetLowerBound(j))
                        {
                            value = xChild.GetLowerBound(j);
                        }
                        if (value > xChild.GetUpperBound(j))
                        {
                            value = xChild.GetUpperBound(j);
                        }

                        xChild.SetValue(j, value);
                    }
                    else
                    {
                        cr = 0.0;
                        double value;
                        value = xCurrent.GetValue(j);
                        xChild.SetValue(j, value);
                    }
                }
            }
            else
            {
                Logger.Log.Error("Exception in " + this.GetType().FullName + ".Execute()");
                throw new Exception("Exception in " + this.GetType().FullName + ".Execute()");
            }
            return(child);
        }
        /// <summary>
        /// Perform the crossover operation.
        /// </summary>
        /// <param name="probability">Crossover probability</param>
        /// <param name="parent1">The first parent</param>
        /// <param name="parent2">The second parent</param>
        /// <returns></returns>
        private Solution[] DoCrossover(double?probability, Solution parent1, Solution parent2)
        {
            Solution[] offSpring = new Solution[2];

            offSpring[0] = new Solution(parent1);
            offSpring[1] = new Solution(parent2);

            double rand;
            double valueY1;
            double valueY2;
            double valueX1;
            double valueX2;
            double upperValue;
            double lowerValue;

            XReal x1    = new XReal(parent1);
            XReal x2    = new XReal(parent2);
            XReal offs1 = new XReal(offSpring[0]);
            XReal offs2 = new XReal(offSpring[1]);

            int numberOfVaribales = x1.GetNumberOfDecisionVariables();

            if (JMetalRandom.NextDouble() <= probability)
            {
                for (int i = 0; i < numberOfVaribales; i++)
                {
                    double max;
                    double min;
                    double range;
                    double minRange;
                    double maxRange;

                    upperValue = x1.GetUpperBound(i);
                    lowerValue = x1.GetLowerBound(i);
                    valueX1    = x1.GetValue(i);
                    valueX2    = x2.GetValue(i);

                    if (valueX2 > valueX1)
                    {
                        max = valueX2;
                        min = valueX1;
                    }
                    else
                    {
                        max = valueX1;
                        min = valueX2;
                    }

                    range = max - min;

                    minRange = min - range * alpha;
                    maxRange = max + range * alpha;

                    rand    = JMetalRandom.NextDouble();
                    valueY1 = minRange + rand * (maxRange - minRange);
                    rand    = JMetalRandom.NextDouble();
                    valueY2 = minRange + rand * (maxRange - minRange);

                    if (valueY1 < lowerValue)
                    {
                        offs1.SetValue(i, lowerValue);
                    }
                    else if (valueY1 > upperValue)
                    {
                        offs1.SetValue(i, upperValue);
                    }
                    else
                    {
                        offs1.SetValue(i, valueY1);
                    }

                    if (valueY2 < lowerValue)
                    {
                        offs2.SetValue(i, lowerValue);
                    }
                    else if (valueY2 > upperValue)
                    {
                        offs2.SetValue(i, upperValue);
                    }
                    else
                    {
                        offs2.SetValue(i, valueY2);
                    }
                }
            }

            return(offSpring);
        }