Esempio n. 1
0
        /// <summary>
        /// Creates an analyis from preprocessed spectra and preprocessed concentrations.
        /// </summary>
        /// <param name="matrixX">The spectral matrix (each spectrum is a row in the matrix). They must at least be centered.</param>
        /// <param name="matrixY">The matrix of concentrations (each experiment is a row in the matrix). They must at least be centered.</param>
        /// <param name="maxFactors">Maximum number of factors for analysis.</param>
        /// <returns>A regression object, which holds all the loads and weights neccessary for further calculations.</returns>
        protected override void AnalyzeFromPreprocessedWithoutReset(IROMatrix matrixX, IROMatrix matrixY, int maxFactors)
        {
            int     numberOfFactors = _calib.NumberOfFactors = Math.Min(matrixX.Columns, maxFactors);
            IMatrix helperY         = new MatrixMath.BEMatrix(matrixY.Rows, 1);

            _PRESS = null;

            for (int i = 0; i < matrixY.Columns; i++)
            {
                MatrixMath.Submatrix(matrixY, helperY, 0, i);

                PLS2Regression r = PLS2Regression.CreateFromPreprocessed(matrixX, helperY, maxFactors);

                IPLS2CalibrationModel cal = r.CalibrationModel;
                _calib.NumberOfFactors = Math.Min(_calib.NumberOfFactors, cal.NumberOfFactors);
                _calib.XLoads[i]       = cal.XLoads;
                _calib.YLoads[i]       = cal.YLoads;
                _calib.XWeights[i]     = cal.XWeights;
                _calib.CrossProduct[i] = cal.CrossProduct;

                if (_PRESS == null)
                {
                    _PRESS = VectorMath.CreateExtensibleVector(r.PRESS.Length);
                }
                VectorMath.Add(_PRESS, r.PRESS, _PRESS);
            }
        }
Esempio n. 2
0
 /// <summary>
 /// Translates the vertices with the specified vector.
 /// </summary>
 /// <param name="vector">The vector.</param>
 public void Translate(ref Vector2 vector)
 {
     for (int i = 0; i < Count; i++)
     {
         this[i] = VectorMath.Add(this[i], vector);
     }
 }
Esempio n. 3
0
    static void Main(string[] args)
    {
        double[] vector1 = { 8, 11 };
        double[] vector2 = { -4, 9 };

        Console.WriteLine($"{VectorToString(vector1)} + {VectorToString(vector2)}");
        Console.WriteLine($"{VectorToString(VectorMath.Add(vector1, vector2))}");

        double[] vector3 = { 14, -2, 0 };
        double[] vector4 = { -3, 23, 50 };

        Console.WriteLine($"{VectorToString(vector3)} + {VectorToString(vector4)}");
        Console.WriteLine($"{VectorToString(VectorMath.Add(vector3, vector4))}");

        Console.WriteLine($"{VectorToString(vector2)} + {VectorToString(vector4)}");
        Console.WriteLine($"{VectorToString(VectorMath.Add(vector2, vector4))}");

        double[] vector5 = { 14, -2, 0, 2 };
        double[] vector6 = { -3, 23, 50, 9 };

        Console.WriteLine($"{VectorToString(vector5)} + {VectorToString(vector6)}");
        Console.WriteLine($"{VectorToString(VectorMath.Add(vector5, vector6))}");

        double[] vector7 = { 14 };
        double[] vector8 = { -3 };

        Console.WriteLine($"{VectorToString(vector7)} + {VectorToString(vector8)}");
        Console.WriteLine($"{VectorToString(VectorMath.Add(vector7, vector8))}");
    }
Esempio n. 4
0
        public static float DistanceBetweenPointAndLineSegment(ref Vector2 point, ref Vector2 lineEndPoint1,
                                                               ref Vector2 lineEndPoint2)
        {
            Vector2 v = VectorMath.Subtract(lineEndPoint2, lineEndPoint1);
            Vector2 w = VectorMath.Subtract(point, lineEndPoint1);

            float c1 = Vector2.Dot(w, v);

            if (c1 <= 0)
            {
                return(DistanceBetweenPointAndPoint(ref point, ref lineEndPoint1));
            }

            float c2 = Vector2.Dot(v, v);

            if (c2 <= c1)
            {
                return(DistanceBetweenPointAndPoint(ref point, ref lineEndPoint2));
            }

            float   b           = c1 / c2;
            Vector2 pointOnLine = VectorMath.Add(lineEndPoint1, VectorMath.Multiply(v, b));

            return(DistanceBetweenPointAndPoint(ref point, ref pointOnLine));
        }
Esempio n. 5
0
 /// <summary>
 /// Translates the control points by the specified vector.
 /// </summary>
 /// <param name="vector">The vector.</param>
 public void Translate(ref Vector2 vector)
 {
     for (int i = 0; i < ControlPoints.Count; i++)
     {
         ControlPoints[i] = VectorMath.Add(ControlPoints[i], vector);
     }
 }
    static void Main()
    {
        double[] vector1 = new double[] { 1.0, 2.0 };
        double[] vector2 = new double[] { -3.0, -4.0 };

        Console.WriteLine("{0}", VectorMath.Add(vector1, vector2));
    }
        public void AddReturnsVectorSum(double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz)
        {
            Vector3 a = new Vector3(ax, ay, az);
            Vector3 b = new Vector3(bx, by, bz);
            Vector3 c = VectorMath.Add(a, b);

            Assert.Equal(cx, c.X);
            Assert.Equal(cy, c.Y);
            Assert.Equal(cz, c.Z);
        }
Esempio n. 8
0
 static void Main(string[] args)
 {
     double[] vector1    = { 2.3, 1.5, 2 };
     double[] vector2    = { 1, 3, 1 };
     double[] new_vector = VectorMath.Add(vector1, vector2);
     for (int i = 0; i < new_vector.Length; i++)
     {
         Console.WriteLine(new_vector[i]);
     }
 }
Esempio n. 9
0
    public static void Main(string[] args)
    {
        double[] vector1 = { 14, -2, 0 };
        double[] vector2 = { -3, 23, 50 };

        double[] result = VectorMath.Add(vector1, vector2);

        Console.WriteLine("{0}", result[0]);
        Console.WriteLine("{0}", result[1]);
        Console.WriteLine("{0}", result[2]);
    }
    static void Main(string[] args)
    {
        double[] vector1 = { 14, -2, 0 };
        double[] vector2 = { -3, 23, 50 };
        double[] result  = VectorMath.Add(vector1, vector2);
        Console.WriteLine("(" + String.Join(", ", result) + ")");


        double[] vector3 = { 14, -2 };
        double[] vector4 = { -3, 23 };
        result = VectorMath.Add(vector3, vector4);
        Console.WriteLine("(" + String.Join(", ", result) + ")");
    }
        static void Main(string[] args)
        {
            Console.WriteLine("Hello Vectors!");

            Vector3 a = new Vector3(10, 10, 10);
            Vector3 b = new Vector3(4, 5, 6);
            Vector3 c = VectorMath.Add(a, b);

            Console.WriteLine("The vector <" + c.X + "," + c.Y + "," + c.Z + ">");
            a.X = -10;
            c   = VectorMath.Subtract(a, b);
            Console.WriteLine($"The vector <{c.X},{c.Y},{c.Z}>");
        }
Esempio n. 12
0
        private static List <IVec3> Chaikin(List <IVec3> pts)
        {
            IVec3[] newPts = new IVec3[(pts.Count - 2) * 2 + 2];
            newPts[0] = pts[0];
            newPts[newPts.Length - 1] = pts[pts.Count - 1];

            int j = 1;

            for (int i = 0; i < pts.Count - 2; i++)
            {
                newPts[j]     = VectorMath.Add(pts[i], VectorMath.Scale(VectorMath.Subtract(pts[i + 1], pts[i]), 0.75f));
                newPts[j + 1] = VectorMath.Add(pts[i + 1],
                                               VectorMath.Scale(VectorMath.Subtract(pts[i + 2], pts[i + 1]), 0.25f));
                j += 2;
            }
            return(newPts.ToList());
        }
Esempio n. 13
0
 static void Main(string[] args)
 {
     double[] vector  = { 14, -2, 0 };
     double[] vector1 = { -3, 23, 50 };
     double[] vector2 = { 8, -11 };
     double[] vector3 = { -4, 9 };
     double[] res;
     double[] res1;
     res  = VectorMath.Add(vector, vector1);
     res1 = VectorMath.Add(vector2, vector3);
     foreach (double x in res)
     {
         Console.WriteLine(x);
     }
     Console.WriteLine();
     foreach (double y in res1)
     {
         Console.WriteLine(y);
     }
 }
    public static void Main()
    {
        double[] vector1   = new double[] { 3.0, 9.0, -12 };
        double[] vector2   = new double[] { 7.0, -3.0, 9.0 };
        double[] sumVector = {};

        sumVector = VectorMath.Add(vector1, vector2);
        Console.Write("Resulting vector is: { ");
        for (int i = 0; i < sumVector.Length; i++)
        {
            Console.Write($"{sumVector[i]} ");
        }
        Console.WriteLine("}");

        double[] vector3 = new double[] { 7.0, -3.0 };
        sumVector = VectorMath.Add(vector1, vector3);
        Console.WriteLine($"It's not the same sizes: \n {{ {sumVector[0]} }}");

        double[] vector4 = new double[] { 7.0, -3.0, 1, 4 };
        double[] vector5 = new double[] { 10.0, -13.0, 3, 2 };
        sumVector = VectorMath.Add(vector1, vector3);
        Console.WriteLine($"It's not a 2D or 3D vector: \n {{ {sumVector[0]} }}");
    }
Esempio n. 15
0
    static void Main(string[] args)
    {
        var s = VectorMath.Add(new double[] { 1, 1, 1 }, new double[] { 1, 1, 1 });

        Console.WriteLine("{0},{1},{2}", s[0], s[1], s[2]);
    }
Esempio n. 16
0
        public static IVec3 Lerp(IVec3 from, IVec3 to, float t)
        {
            IVec3 dir = VectorMath.Subtract(to, from);

            return(VectorMath.Add(from, VectorMath.Scale(dir, t)));
        }
Esempio n. 17
0
 static void Main(string[] args)
 {
     double[] sum = VectorMath.Add(new double[] { 3, 9 }, new double[] { 1, 1 });
     Console.WriteLine("Sum is ({0}, {1})", sum[0], sum[1]);
 }
Esempio n. 18
0
            /// <summary>
            /// Execute predictor-corrector scheme for Nordsieck's method
            /// </summary>
            /// <param name="flag"></param>
            /// <param name="f">Evaluation of the deriatives. First argument is time, second arg are the state variables, and 3rd arg is the array to accomodate the derivatives.</param>
            /// <param name="denseJacobianEvaluation">Evaluation of the jacobian.</param>
            /// <param name="sparseJacobianEvaluation">Evaluation of the jacobian as a sparse matrix. Either this or the previous arg must be valid.</param>
            /// <param name="opts">current options</param>
            /// <returns>en - current error vector</returns>
            internal void PredictorCorrectorScheme(
                ref bool flag,
                Action <double, double[], double[]> f,
                Func <double, double[], IROMatrix <double> > denseJacobianEvaluation,
                Func <double, double[], SparseDoubleMatrix> sparseJacobianEvaluation,
                GearsBDFOptions opts
                )
            {
                NordsieckState currstate = this;
                NordsieckState newstate  = this;
                int            n         = currstate._xn.Length;

                VectorMath.Copy(currstate._en, ecurr);
                VectorMath.Copy(currstate._xn, xcurr);
                var x0 = currstate._xn;

                MatrixMath.Copy(currstate._zn, zcurr); // zcurr now is old nordsieck matrix
                var qcurr = currstate._qn;             // current degree
                var qmax  = currstate._qmax;           // max degree
                var dt    = currstate._dt;
                var t     = currstate._tn;

                MatrixMath.Copy(currstate._zn, z0); // save Nordsieck matrix

                //Tolerance computation factors
                double Cq  = Math.Pow(qcurr + 1, -1.0);
                double tau = 1.0 / (Cq * Factorial(qcurr) * l[qcurr - 1][qcurr]);

                int count = 0;

                double Dq = 0.0, DqUp = 0.0, DqDown = 0.0;
                double delta = 0.0;

                //Scaling factors for the step size changing
                //with new method order q' = q, q + 1, q - 1, respectively
                double rSame, rUp, rDown;

                if (null != denseJacobianEvaluation)
                {
                    var J = denseJacobianEvaluation(t + dt, xcurr);
                    if (J.GetType() != P?.GetType())
                    {
                        AllocatePMatrixForJacobian(J);
                    }

                    do
                    {
                        MatrixMath.MapIndexed(J, dt * b[qcurr - 1], (i, j, aij, factor) => (i == j ? 1 : 0) - aij * factor, P, Zeros.AllowSkip); // P = Identity - J*dt*b[qcurr-1]
                        VectorMath.Copy(xcurr, xprev);
                        f(t + dt, xcurr, ftdt);
                        MatrixMath.CopyColumn(z0, 1, colExtract);                                                       // 1st derivative/dt
                        VectorMath.Map(ftdt, colExtract, ecurr, dt, (ff, c, e, local_dt) => local_dt * ff - c - e, gm); // gm = dt * f(t + dt, xcurr) - z0.GetColumn(1) - ecurr;
                        gaussSolver.SolveDestructive(P, gm, tmpVec1);
                        VectorMath.Add(ecurr, tmpVec1, ecurr);                                                          //	ecurr = ecurr + P.SolveGE(gm);
                        VectorMath.Map(x0, ecurr, b[qcurr - 1], (x, e, local_b) => x + e * local_b, xcurr);             //	xcurr = x0 + b[qcurr - 1] * ecurr;

                        //Row dimension is smaller than zcurr has
                        int M_Rows    = ecurr.Length;
                        int M_Columns = l[qcurr - 1].Length;
                        //So, "expand" the matrix
                        MatrixMath.MapIndexed(z0, (i, j, z) => z + (i < M_Rows && j < M_Columns ? ecurr[i] * l[qcurr - 1][j] : 0.0d), zcurr);

                        Dq = ToleranceNorm(ecurr, opts.RelativeTolerance, opts.AbsoluteTolerance, xprev);
                        var factor_deltaE = (1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1]);
                        VectorMath.Map(ecurr, currstate._en, factor_deltaE, (e, c, factor) => (e - c) * factor, deltaE); // deltaE = (ecurr - currstate.en)*(1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1])

                        DqUp = ToleranceNorm(deltaE, opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        zcurr.CopyColumn(qcurr - 1, colExtract);
                        DqDown = ToleranceNorm(colExtract, opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        delta  = Dq / (tau / (2 * (qcurr + 2)));
                        count++;
                    } while (delta > 1.0d && count < opts.NumberOfIterations);
                }
                else if (null != sparseJacobianEvaluation)
                {
                    SparseDoubleMatrix J = sparseJacobianEvaluation(t + dt, xcurr);
                    var P = new SparseDoubleMatrix(J.RowCount, J.ColumnCount);

                    do
                    {
                        J.MapSparseIncludingDiagonal((x, i, j) => (i == j ? 1 : 0) - x * dt * b[qcurr - 1], P);
                        VectorMath.Copy(xcurr, xprev);
                        f(t + dt, xcurr, ftdt);
                        MatrixMath.CopyColumn(z0, 1, colExtract);
                        VectorMath.Map(ftdt, colExtract, ecurr, (ff, c, e) => dt * ff - c - e, gm); // gm = dt * f(t + dt, xcurr) - z0.GetColumn(1) - ecurr;
                        gaussSolver.SolveDestructive(P, gm, tmpVec1);
                        VectorMath.Add(ecurr, tmpVec1, ecurr);                                      //	ecurr = ecurr + P.SolveGE(gm);
                        VectorMath.Map(x0, ecurr, (x, e) => x + e * b[qcurr - 1], xcurr);           // xcurr = x0 + b[qcurr - 1] * ecurr;

                        //Row dimension is smaller than zcurr has
                        int M_Rows    = ecurr.Length;
                        int M_Columns = l[qcurr - 1].Length;
                        //So, "expand" the matrix
                        MatrixMath.MapIndexed(z0, (i, j, z) => z + (i < M_Rows && j < M_Columns ? ecurr[i] * l[qcurr - 1][j] : 0.0d), zcurr);

                        Dq = ToleranceNorm(ecurr, opts.RelativeTolerance, opts.AbsoluteTolerance, xprev);
                        var factor_deltaE = (1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1]);
                        VectorMath.Map(ecurr, currstate._en, (e, c) => (e - c) * factor_deltaE, deltaE); // deltaE = (ecurr - currstate.en)*(1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1])

                        DqUp   = ToleranceNorm(deltaE, opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        DqDown = ToleranceNorm(zcurr.GetColumn(qcurr - 1), opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        delta  = Dq / (tau / (2 * (qcurr + 2)));
                        count++;
                    } while (delta > 1.0d && count < opts.NumberOfIterations);
                }
                else // neither denseJacobianEvaluation nor sparseJacobianEvaluation valid
                {
                    throw new ArgumentNullException(nameof(denseJacobianEvaluation), "Either denseJacobianEvaluation or sparseJacobianEvaluation must be set!");
                }

                //======================================

                var nsuccess = count < opts.NumberOfIterations ? currstate._nsuccess + 1 : 0;

                if (count < opts.NumberOfIterations)
                {
                    flag = false;
                    MatrixMath.Copy(zcurr, newstate._zn);
                    zcurr.CopyColumn(0, newstate._xn);
                    VectorMath.Copy(ecurr, newstate._en);
                }
                else
                {
                    flag = true;
                    // MatrixMath.Copy(currstate.zn, newstate.zn); // null operation since currstate and newstate are identical
                    currstate._zn.CopyColumn(0, newstate._xn);
                    VectorMath.Copy(currstate._en, newstate._en); // null operation since currstate and newstate are identical
                }

                //Compute step size scaling factors
                rUp = 0.0;

                if (currstate._qn < currstate._qmax)
                {
                    rUp = rUp = 1.0 / 1.4 / (Math.Pow(DqUp, 1.0 / (qcurr + 2)) + 1e-6);
                }

                rSame = 1.0 / 1.2 / (Math.Pow(Dq, 1.0 / (qcurr + 1)) + 1e-6);

                rDown = 0.0;

                if (currstate._qn > 1)
                {
                    rDown = 1.0 / 1.3 / (Math.Pow(DqDown, 1.0 / (qcurr)) + 1e-6);
                }

                //======================================
                _nsuccess = nsuccess >= _qn ? 0 : nsuccess;
                //Step size scale operations

                if (rSame >= rUp)
                {
                    if (rSame <= rDown && nsuccess >= _qn && _qn > 1)
                    {
                        _qn = _qn - 1;
                        _Dq = DqDown;

                        for (int i = 0; i < n; i++)
                        {
                            for (int j = newstate._qn + 1; j < qmax + 1; j++)
                            {
                                _zn[i, j] = 0.0;
                            }
                        }
                        nsuccess = 0;
                        _rFactor = rDown;
                    }
                    else
                    {
                        // _qn = _qn;
                        _Dq      = Dq;
                        _rFactor = rSame;
                    }
                }
                else
                {
                    if (rUp >= rDown)
                    {
                        if (rUp >= rSame && nsuccess >= _qn && _qn < _qmax)
                        {
                            _qn      = _qn + 1;
                            _Dq      = DqUp;
                            _rFactor = rUp;
                            nsuccess = 0;
                        }
                        else
                        {
                            // _qn = _qn;
                            _Dq      = Dq;
                            _rFactor = rSame;
                        }
                    }
                    else
                    {
                        if (nsuccess >= _qn && _qn > 1)
                        {
                            _qn = _qn - 1;
                            _Dq = DqDown;

                            for (int i = 0; i < n; i++)
                            {
                                for (int j = newstate._qn + 1; j < qmax + 1; j++)
                                {
                                    _zn[i, j] = 0.0;
                                }
                            }
                            nsuccess = 0;
                            _rFactor = rDown;
                        }
                        else
                        {
                            // _qn = _qn;
                            _Dq      = Dq;
                            _rFactor = rSame;
                        }
                    }
                }

                _dt = dt;
                _tn = t;
            }