Esempio n. 1
0
        private void OnMouseDown(object sender, MouseButtonEventArgs mouseButtonEventArgs)
        {
            if (Mouse.RightButton == MouseButtonState.Pressed)
            {
                MainWindowViewModel viewModel = (MainWindowViewModel)DataContext;

                var             mousePosition = mouseButtonEventArgs.GetPosition(this);
                Vector <double> mouseVec      = _vecBuilder.DenseOfArray(new[] { mousePosition.X, mousePosition.Y, 1.0f });

                var featureBands = viewModel.Layers.Where(b => b.UseFeature).OrderBy(b => b.Name).ToList();

                ushort[] bandPixels = new ushort[featureBands.Count];

                var viewToToWorld = viewModel.ClassifierViewModel.ScreenToWorld * _scaleMat.Inverse() * _screenToViewMat.Inverse();

                for (int bandIndex = 0; bandIndex < featureBands.Count; ++bandIndex)
                {
                    var band              = featureBands[bandIndex];
                    var viewToPixelMat    = band.WorldToImage * viewToToWorld;
                    var bandPixelPosition = viewToPixelMat * mouseVec;

                    ushort bandPixelValue = band.BandImage.GetScaledToUshort((int)bandPixelPosition[0], (int)bandPixelPosition[1]);

                    bandPixels[bandIndex] = bandPixelValue;
                }

                var worldMousePosition = viewToToWorld * mouseVec;

                int selectedIndex           = viewModel.LandcoverTypes.Values.ToList().FindIndex(f => f.Id == viewModel.SelectedLandCoverTypeViewModel.Id);
                var classifiedFeatureVector = new ClassifiedFeatureVector(selectedIndex, new FeatureVector(bandPixels), new Point(worldMousePosition[0], worldMousePosition[1]));
                viewModel.ClassifierViewModel.FeaturesViewModel.AddFeature(new ClassifiedFeatureVectorViewModel(classifiedFeatureVector));
            }
        }
        public void Update(params double[] z)
        {
            var z_ = CheckZ(z);
            var zv = Vbuilder.DenseOfArray(z_);

            FilterSharp.Update(ref x, ref P, zv, h, R);
        }
Esempio n. 3
0
        public static PointD[] Straight(double[][] initPoints, CameraParameters param)
        {
            int N = initPoints.Length;

            MathNet.Numerics.LinearAlgebra.Vector <double> C = param.Pos;
            Matrix <double> R = param.R;

            R = M.DenseOfDiagonalArray(new double[] { 1, -1, -1 }) * R;

            MathNet.Numerics.LinearAlgebra.Vector <double>[] Apoints = new MathNet.Numerics.LinearAlgebra.Vector <double> [N];
            for (int i = 0; i < N; i++)
            {
                Apoints[i] = V.DenseOfArray(initPoints[i]);
            }

            MathNet.Numerics.LinearAlgebra.Vector <double>[] Cpoints = new MathNet.Numerics.LinearAlgebra.Vector <double> [N];
            for (int i = 0; i < N; i++)
            {
                Cpoints[i] = R * (Apoints[i] - C);
            }

            PointD[] Bpoints = new PointD[N];
            for (int i = 0; i < N; i++)
            {
                Bpoints[i] = new PointD(Cpoints[i][0] / Cpoints[i][2], Cpoints[i][1] / Cpoints[i][2]);
            }

            return(Bpoints);
        }
Esempio n. 4
0
        /// <summary>
        /// 正規化した座標のリストを作成
        /// </summary>
        /// <param name="tail"></param>
        private void NormalizePoints(int listnum)
        {
            VectorBuilder <double> Vector = Vector <double> .Build;
            MatrixBuilder <double> Matrix = Matrix <double> .Build;

            for (int i = 0; i < listnum; i++)
            {
                //体が常に横を向くように正規化
                //HipRightからHipLeftへのびるXZ平面ベクトルに対して垂直なXZ平面ベクトルを計算
                double[] hip = new double[3] {
                    -(kinectPoints[12][i][2] - kinectPoints[16][i][2]),
                    0,
                    kinectPoints[12][i][0] - kinectPoints[16][i][0]
                };
                var VecHip = Vector.DenseOfArray(hip);
                //求めたベクトルの絶対値を1に
                var e_x = VecHip.Divide((float)VecHip.L2Norm());
                //e_y = (0,1,0)
                var e_y = Vector.DenseOfArray(new double[3] {
                    0, 1, 0
                });
                //e_z = e_x × e_y
                var e_z = Vector.DenseOfArray(new double[3] {
                    -e_x.At(2), 0, e_x.At(0)
                });

                //e_x,e_y,e_zを一つの行列に
                var      mat  = Matrix.DenseOfColumnVectors(new Vector <double>[] { e_x, e_y, e_z }).Inverse();
                double[] norm = new double[3];//正規化した座標を格納する三次元座標
                for (int j = 0; j < 21; j++)
                {
                    var VecJ = Vector.DenseOfArray(new double[3] {
                        kinectPoints[j][i][0] - kinectPoints[0][i][0],
                        kinectPoints[j][i][1] - kinectPoints[0][i][1],
                        kinectPoints[j][i][2] - kinectPoints[0][i][2]
                    });
                    var E = mat * VecJ;
                    for (int k = 0; k < 3; k++)
                    {
                        norm[k] = E.At(k);
                    }
                    kinectNormalizedPoints[j].Add((double[])norm.Clone());
                }
                //頭の高さを1として正規化
                double[] head    = kinectNormalizedPoints[3][i];
                double   headVec = Math.Sqrt(head[0] * head[0] + head[1] * head[1] + head[2] * head[2]);
                for (int j = 0; j < 21; j++)//jointnum:3 = head
                {
                    double[] points = kinectNormalizedPoints[j][i];
                    double   Vec    = Math.Sqrt(points[0] * points[0] + points[1] * points[1] + points[2] * points[2]);
                    Vec /= headVec;
                    //kinectNormalizedPoints[j][i][0] *= Vec;
                }
            }
        }
Esempio n. 5
0
        private void OnMove(object sender, MouseEventArgs args)
        {
            MainWindowViewModel viewModel = (MainWindowViewModel)DataContext;

            if (viewModel == null)
            {
                return;
            }

            var position = args.GetPosition(this);
            var posVec   = _vecBuilder.DenseOfArray(new[] { position.X, position.Y, 1 });

            var featureBands = viewModel.Layers.Where(b => b.UseFeature).ToList();
            var indices      = viewModel.Layers.Where(b => b.UseFeature).Select((b, i) => i);

            ushort[] bandIntensities = new ushort[featureBands.Count];
            foreach (int bandIndex in indices)
            {
                var band           = featureBands[bandIndex];
                var viewToPixelMat = band.WorldToImage * viewModel.ClassifierViewModel.ScreenToWorld * _scaleMat.Inverse() * _screenToViewMat.Inverse();

                var bandPixelPosition = viewToPixelMat * posVec;

                ushort bandIntensity = band.BandImage.GetScaledToUshort((int)bandPixelPosition[0], (int)bandPixelPosition[1]);
                bandIntensities[bandIndex] = bandIntensity;
            }

            if (viewModel.ClassifierViewModel.IsTrained)
            {
                var featureVector = new FeatureVector(bandIntensities);
                var predictedType = viewModel.ClassifierViewModel.CurrentClassifierViewModel.Predict(featureVector);

                viewModel.PredictionViewModel.MousePredictionTypeViewModel = viewModel.LandcoverTypes.Values.ToList()[predictedType];
            }
        }
Esempio n. 6
0
    // Use this for initialization
    void Start()
    {
        /*SparseMatrix A = SparseMatrix.OfRowArrays(new double[7][]
         * {
         *  new double[] {0, -1, -1, -1, -1, -1, -1},
         *  new double[] {-1, 1, 0, 0, 0, 0, 0},
         *  new double[] {-1, 0, 1, 0, 0, 0, 0},
         *  new double[] {-1, 0, 0, 1, 0, 0, 0},
         *  new double[] {-1, 0, 0, 0, 1, 0, 0},
         *  new double[] {-1, 0, 0, 0, 0, 1, 0},
         *  new double[] {-1, 0, 1, 0, 0, 0, 1}
         * });*/

        Func <int, int, double> init = cValues;
        SparseMatrix            A    = SparseMatrix.Create(7, 7, init);

        double lambda = -993f / (6f * 0.01f);

        lambda *= 1f - 5f / 7f;
        double nDefault = 5f;
        VectorBuilder <double> Builder = Vector <double> .Build;
        Vector <double>        B       = Builder.DenseOfArray(new double[7]
        {
            0,
            lambda,
            lambda,
            lambda,
            lambda,
            lambda,
            lambda,
        });

        VectorBuilder <double> resultB = Vector <double> .Build;
        Vector <double>        result  = resultB.Dense(7);

        A.Solve(B, result);

        Debug.Log("Matrix A is : " + A.ToString());
        Debug.Log("Matrix B is : " + B.ToString());
        Debug.Log("Lambda is : " + lambda);
        Debug.Log("The result vector3 is : " + result.ToString());
    }
Esempio n. 7
0
        public static void Main()
        {
            // Write a message to the Console
            Console.WriteLine("Welcome to Bridge.NET");

            Vector <double> k     = v_builder.DenseOfArray(new[] { 1.0, 0.0, 0.0 });
            Matrix <double> I     = m_builder.DenseIdentity(3);
            Matrix <double> khat  = Hat(k);
            Matrix <double> khat2 = khat.Multiply(khat);

            Console.WriteLine(I + khat + khat2);

            // After building (Ctrl + Shift + B) this project,
            // browse to the /bin/Debug or /bin/Release folder.

            // A new bridge/ folder has been created and
            // contains your projects JavaScript files.

            // Open the bridge/index.html file in a browser by
            // Right-Click > Open With..., then choose a
            // web browser from the list

            // This application will then run in the browser.
        }
Esempio n. 8
0
        static void Main(string[] args)
        {
            //初始化一个矩阵和向量的构建对象
            var mb  = Matrix <double> .Build;
            var mb1 = Matrix <double> .Build;
            var vb  = Vector <double> .Build;

            DateTime time = new DateTime(2005, 12, 05);



            double[] AiC = { 1, 2, 3 };
            double[,] AiC1 = { { 1, 2, 3 }, { 1, 2, 3 }, { 1, 2, 3 } };
            double[]    AiR      = new double[3];
            DenseMatrix AiMatrix = DenseMatrix.OfArray(new[, ] {
                { 1.0, 2.0, 3.0 }, { 4.0, 5.0, 6.0 }, { 7.0, 8.0, 9.0 }
            });;                                                                                                             //创建一个对角矩阵对象
            VectorBuilder <double> vector = Vector <double> .Build;
            var t = vector.DenseOfArray(AiC);
            //var c = AiMatrix.DenseOfArray(AiC1);
            var r = t * AiMatrix;



            var matrixA = DenseMatrix.OfArray(new[, ] {
                { 1.0, 2.0, 3.0 }, { 4.0, 5.0, 6.0 }, { 7.0, 8.0, 9.0 }
            });
            var matrixB = DenseMatrix.OfArray(new[, ] {
                { 1.0, 3.0, 5.0 }, { 2.0, 4.0, 6.0 }, { 3.0, 5.0, 7.0 }
            });
            var s = matrixA * matrixB;



            string   str   = "20100531";
            DateTime dtime = DateTime.ParseExact(str, "yyyyMMdd", null);


            DateTime dtime1 = DateTime.Now;

            Dictionary <int, double> dic = new Dictionary <int, double>();

            dic.Add(0, 1);
            dic.Add(1, 2);
            dic.Add(2, 3);
            dic.Add(3, 4);
            //var matrix2 = mb.Dense(2, 3, (i, j) => 3 * i + j);
            var diagMaxtrix = mb.DenseDiagonal(4, 4, (i) => i);


            //先生成数据集合
            var chiSquare = new ChiSquared(5);

            Console.WriteLine(@"2. Generate 1000 samples of the ChiSquare(5) distribution");
            var data = new double[1000];
            //var data1 = new double[1000];
            //for (var i = 0; i < data.Length; i++)
            //{
            //    data[i] = chiSquare.Sample();
            //}
            List <double> a = new List <double>();
            List <double> b = new List <double>();

            //data1 = new double []{1,2,3,4,5};

            data[0] = 10;
            data[1] = 0;
            data[2] = 0;
            data[3] = 0;
            data[4] = 0;
            data[5] = 0;
            data[6] = 0;
            data[7] = 0;
            data[8] = 0;
            data[9] = -0.1;
            var data1 = new double[] { 1, 2, 3 };
            var data2 = new double[] { 1, 2, 6 };

            data1.Mean();
            data1.Variance();
            data2.Mean();
            var ss = data1.Covariance(data2);

            //使用扩展方法进行相关计算
            Console.WriteLine(@"3.使用扩展方法获取生成数据的基本统计结果");
            Console.WriteLine(@"{0} - 最大值", data.Maximum().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 最小值", data.Minimum().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 均值", data.Mean().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 中间值", data.Median().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 有偏方差", data.PopulationVariance().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 无偏方差", data.Variance().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 标准偏差", data.StandardDeviation().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - 标准有偏偏差", data.PopulationStandardDeviation().ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();



            Console.WriteLine(@"4. 使用DescriptiveStatistics类进行基本的统计计算");
            var descriptiveStatistics = new DescriptiveStatistics(data);//使用数据进行类型的初始化

            //直接使用属性获取结果
            Console.WriteLine(@"{0} - Kurtosis", descriptiveStatistics.Kurtosis.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - Largest element", descriptiveStatistics.Maximum.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - Smallest element", descriptiveStatistics.Minimum.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - Mean", descriptiveStatistics.Mean.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - Variance", descriptiveStatistics.Variance.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - Standard deviation", descriptiveStatistics.StandardDeviation.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine(@"{0} - Skewness", descriptiveStatistics.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();
        }
        public static Vector <double> Invhat(Matrix <double> khat)
        {
            double[]        inv    = { (-khat[1, 2] + khat[2, 1]), (khat[0, 2] - khat[2, 0]), (-khat[0, 1] + khat[1, 0]) };
            Vector <double> output = v_builder.DenseOfArray(inv);

            output /= 2;
            return(output);
        }
        public double Normalize(int joint_index, double theta)
        {
            double u = Robot.Joint_upper_limit[joint_index];
            double l = Robot.Joint_lower_limit[joint_index];

            if (check_limits)
            {
                if (!(l < theta && theta < u))
                {
                    Vector <double> a = v_builder.DenseOfArray(new[] { -1.0, 1.0 });
                    a = a * 2 * Math.PI;
                    Vector <double> b     = a.Add(theta);
                    int             index = -1;
                    for (int i = 0; i < b.Count; i++)
                    {
                        if (l < b[i] && b[i] < u)
                        {
                            index = i;
                            break;
                        }
                    }
                    if (index == -1)
                    {
                        return(default(double));
                    }
                    else
                    {
                        theta = theta + a[index];
                    }
                }
            }
            if (use_last_joints)
            {
                double diff = Last_joints[joint_index] - theta;

                int    n_diff = (int)Math.Floor(diff / (Math.PI * 2.0));
                double r_diff = diff % (Math.PI * 2.0);
                if (r_diff > Math.PI)
                {
                    n_diff += 1;
                }
                if (Math.Abs(n_diff) > 0)
                {
                    if (!check_limits)
                    {
                        theta += 2 * Math.PI * n_diff;
                    }
                    else
                    {
                        double theta_vs = theta + 2 * Math.PI;

                        Vector <double> theta_v = v_builder.Dense(Math.Abs(n_diff));
                        for (int i = 0; i < theta_v.Count; i++)
                        {
                            if (n_diff > 0)
                            {
                                theta_v[i] = n_diff - i;
                            }
                            else if (n_diff < 0)
                            {
                                theta_v[i] = n_diff + i;
                            }
                        }
                        theta_v = theta_v * 2 * Math.PI;
                        theta_v = theta_v.Add(theta);
                        int index = -1;
                        for (int i = 0; i < theta_v.Count; i++)
                        {
                            if (l < theta_v[i] && theta_v[i] < u)
                            {
                                index = i;
                                break;
                            }
                        }
                        if (index != -1)
                        {
                            theta = theta_v[index];
                        }
                    }
                }
            }
            return(theta);
        }
        public static double[][] robot6_sphericalwrist_invkin(Robot robot, Transform desired_pose, double[] last_joints = default(double[]))
        {
            if (robot.R_tool != default(Matrix <double>) && robot.P_tool != default(Vector <double>))
            {
                Matrix <double> transposed = robot.R_tool.Transpose();
                desired_pose.R = desired_pose.R.Multiply(transposed);
                desired_pose.P = desired_pose.P - desired_pose.R * robot.P_tool;
            }
            Matrix <double> H       = robot.H.Clone();
            Matrix <double> P       = robot.P.Clone();
            List <double[]> theta_v = new List <double[]>();
            Vector <double> zeros   = v_builder.DenseOfArray(new[] { 0.0, 0.0, 0.0 });
            Vector <double> ex      = v_builder.DenseOfArray(new[] { 1.0, 0.0, 0.0 });
            Vector <double> ey      = v_builder.DenseOfArray(new[] { 0.0, 1.0, 0.0 });
            Vector <double> ez      = v_builder.DenseOfArray(new[] { 0.0, 0.0, 1.0 });

            if (!P.Column(4).Equals(zeros))
            {
                double P4_d = P.Column(4) * H.Column(3);
                if (!(P.Column(4).Subtract(P4_d * H.Column(3)).Equals(zeros)))
                {
                    throw new ArgumentException(String.Format("Robot may not have spherical wrist"));
                }
                P.SetColumn(3, P.Column(3) + P.Column(4));
                P.SetColumn(4, zeros);
            }
            if (!P.Column(5).Equals(zeros))
            {
                double P5_d = P.Column(5) * H.Column(5);
                if (!(P.Column(5).Subtract(P5_d * H.Column(5)).Equals(zeros)))
                {
                    throw new ArgumentException(String.Format("Robot may not have spherical wrist"));
                }
                P.SetColumn(6, P.Column(6) + P.Column(5));
                P.SetColumn(5, zeros);
            }

            double          d1 = ey * (P.Column(1).Add(P.Column(2)).Add(P.Column(3)));
            Vector <double> v1 = desired_pose.P.Subtract(desired_pose.R * P.Column(6));

            double[]        Q1        = GeneralRoboticsToolbox.Subproblem4(ey, v1, -H.Column(0), d1);
            NormalizeJoints normalize = new NormalizeJoints(robot, last_joints);

            double[] first_normalize = normalize.FindNormalizedJoints(0, Q1);
            foreach (double q1 in first_normalize)
            {
                Matrix <double> R01              = GeneralRoboticsToolbox.Rot(H.Column(0), q1);
                Vector <double> p26_q1           = R01.TransposeThisAndMultiply(desired_pose.P - desired_pose.R * P.Column(6)).Subtract(P.Column(0).Add(P.Column(1)));
                double          d3               = p26_q1.L2Norm();
                Vector <double> v3               = P.Column(2);
                Vector <double> p3               = P.Column(3);
                double[]        Q3               = GeneralRoboticsToolbox.Subproblem3(p3, v3, H.Column(2), d3);
                double[]        second_normalize = normalize.FindNormalizedJoints(2, Q3);
                foreach (double q3 in second_normalize)
                {
                    Matrix <double> R23      = GeneralRoboticsToolbox.Rot(H.Column(2), q3);
                    Vector <double> v2       = p26_q1;
                    Vector <double> p2       = P.Column(2) + R23 * P.Column(3);
                    double          q2       = GeneralRoboticsToolbox.Subproblem1(p2, v2, H.Column(1));
                    double[]        q2_array = normalize.FindNormalizedJoints(1, new[] { q2 });
                    if (q2_array.Length == 0)
                    {
                        continue;
                    }
                    q2 = q2_array[0];
                    Matrix <double> R12             = GeneralRoboticsToolbox.Rot(H.Column(1), q2);
                    Matrix <double> R03             = R01 * R12 * R23;
                    Matrix <double> R36             = R03.Transpose() * desired_pose.R;
                    Vector <double> v4              = R36 * H.Column(5);
                    Vector <double> p4              = H.Column(5);
                    double[]        Q4_Q5           = GeneralRoboticsToolbox.Subproblem2(p4, v4, H.Column(3), H.Column(4));
                    double[][]      third_normalize = normalize.FindNormalizedJoints(new[] { 3, 4 }, Q4_Q5);
                    Console.WriteLine("size of qs {0}, {1}", third_normalize[0].Length, third_normalize[1].Length);
                    int minoftwo = Math.Min(third_normalize[0].Length, third_normalize[1].Length);
                    Console.WriteLine(minoftwo);
                    for (int q = 0; q < minoftwo; q++)
                    {
                        Matrix <double> R35      = GeneralRoboticsToolbox.Rot(H.Column(3), third_normalize[0][q]) * GeneralRoboticsToolbox.Rot(H.Column(4), third_normalize[1][q]);
                        Matrix <double> R05      = R03 * R35;
                        Matrix <double> R56      = R05.Transpose() * desired_pose.R;
                        Vector <double> v6       = R56 * H.Column(4);
                        Vector <double> p6       = H.Column(4);
                        double          q6       = GeneralRoboticsToolbox.Subproblem1(p6, v6, H.Column(5));
                        double[]        q6_array = normalize.FindNormalizedJoints(5, new[] { q6 });
                        if (q6_array.Length == 0)
                        {
                            continue;
                        }
                        q6 = q6_array[0];

                        double[] theta_v_entry = new double[] { q1, q2, q3, third_normalize[0][q], third_normalize[1][q], q6 };
                        theta_v.Add(theta_v_entry);
                    }
                }
            }

            if (last_joints != default(double[]))
            {
                double[] theta_dist_arr = new double[theta_v.Count];


                for (int i = 0; i < theta_v.Count; i++)
                {
                    Vector <double> theta_v_vec    = v_builder.DenseOfArray(theta_v[i]);
                    Vector <double> theta_dist_vec = theta_v_vec.Subtract(last_joints[i]);
                    theta_dist_arr[i] = theta_dist_vec.L2Norm();
                }
                int             index           = 0;
                List <double>   theta_dist_list = theta_dist_arr.ToList();
                List <double[]> returned        = new List <double[]>();
                for (int z = 0; z < theta_dist_list.Count; z++)
                {
                    index       = theta_dist_list.IndexOf(theta_dist_list.Min());
                    returned[z] = theta_v[index];
                    theta_dist_list.RemoveAt(index);
                }
                return(returned.ToArray());
            }
            else
            {
                return(theta_v.ToArray());
            }
        }
Esempio n. 12
0
        static void TestHat()
        {
            //Test Hat
            Console.WriteLine("Testing Hat...");
            Vector <double> k    = v_builder.DenseOfArray(new[] { 1.0, 2.0, 3.0 });
            Matrix <double> khat = m_builder.Dense(3, 3);

            khat[0, 1] = -3;
            khat[0, 2] = 2;
            khat[1, 0] = 3;
            khat[1, 2] = -1;
            khat[2, 0] = -2;
            khat[2, 1] = 1;
            Matrix <double> k_hat = GeneralRoboticsToolbox.Hat(k);

            if (!AlmostEqualsMatrix(k_hat, khat))
            {
                Console.WriteLine("hat failed");
            }
            else
            {
                Console.WriteLine("hat succeeded");
            }
        }
Esempio n. 13
0
 public static Vector <double> Quaternion(this VectorBuilder <double> b, double w, double x, double y, double z)
 {
     return(b.DenseOfArray(new double[] { w, x, y, z }));
 }
Esempio n. 14
0
 public static Vector <double> Dense3(this VectorBuilder <double> b, double x, double y, double z)
 {
     return(b.DenseOfArray(new double[] { x, y, z }));
 }