Esempio n. 1
0
        public void LogisticCorrectRun()
        {
            Layer layer = new Layer(
                new WeightsMatrix(
                    Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 2, 3, 5 }
            })
                    ),
                new BiasesVector(1),
                NeuralFunction.__Logistic,
                NeuralFunction.__LogisticDerivative
                );

            VectorBatch input = new VectorBatch(
                Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 7, 11, 13 }
            })
                );

            VectorBatch outputcheck = new VectorBatch(
                Matrix <double> .Build.DenseOfArray(new double[, ] {
                { NeuralFunction.__Logistic(112) }
            })
                );

            VectorBatch result = layer.Run(input);

            Assert.AreEqual(outputcheck, result);
        }
Esempio n. 2
0
        public void CanBack2()
        {
            wc_2.Run(inputBatch_2);
            VectorBatch inputGradient = wc_2.BackPropagate(gradientBatch2);

            Assert.AreEqual(inputGradientCheck, inputGradient);
        }
Esempio n. 3
0
        public void CorrectRun()
        {
            Layer layer = new Layer(
                new WeightsMatrix(
                    Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 2, 3, 5 }
            })
                    )
                );

            VectorBatch input = new VectorBatch(
                Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 7, 11, 13 }
            })
                );
            VectorBatch outputcheck = new VectorBatch(
                Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 112 }
            })
                );

            VectorBatch result = layer.Run(input);

            Assert.AreEqual(outputcheck, result);
        }
Esempio n. 4
0
        public void LogisticInputGradient()
        {
            Layer layer = new Layer(
                new WeightsMatrix(
                    Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1 }
            })
                    ),
                new BiasesVector(1),
                NeuralFunction.__Logistic,
                NeuralFunction.__LogisticDerivative
                );

            DataVector  zeroVector = new DataVector(1);
            VectorBatch result     = layer.Run(zeroVector);

            DataVector oneVector = new DataVector(
                Vector <double> .Build.DenseOfArray(new double[] { 1 })
                );

            VectorBatch inputGradient = layer.BackPropagate(oneVector);

            DataVector inputGradientCheck = new DataVector(
                Vector <double> .Build.DenseOfArray(
                    new double[] { NeuralFunction.__LogisticDerivative(0, NeuralFunction.__Logistic(0)) })
                );

            Assert.AreEqual(inputGradientCheck, inputGradient);
        }
Esempio n. 5
0
        public void CanRun1()
        {
            VectorBatch result   = wc_1.Run(inputBatch_1);
            VectorBatch outcheck = inputBatch_1;

            Assert.AreEqual(outcheck, result);
        }
Esempio n. 6
0
 public void AsMatrix()
 {
     NetworkVector vector = new NetworkVector(new double[] { 1, 2, 3 });
     VectorBatch   batch  = new VectorBatch(new List <NetworkVector> {
         vector, vector
     });
     Matrix <double> result = batch.AsMatrix();
 }
Esempio n. 7
0
        public void CanBack1()
        {
            wc_1b.Run(inputBatch_1);
            VectorBatch inputGradient = wc_1b.BackPropagate(gradientBatch1);

            VectorBatch inputGradientCheck = gradientBatch1;

            Assert.AreEqual(inputGradientCheck, inputGradient);
        }
Esempio n. 8
0
        public void CanRun2()
        {
            VectorBatch result = wc_2.Run(inputBatch_2);

            VectorBatch outcheck = new VectorBatch(
                Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 25, 32 }, { 31, 41 }
            }));

            Assert.AreEqual(outcheck, result);
        }
Esempio n. 9
0
        public void CanRunBatch()
        {
            VectorBatch result = wc_2.Run(input_batch);

            for (int i = 0; i < input_batch.AsMatrix().RowCount; i++)
            {
                Assert.AreEqual(
                    wc_2.Run(input_batch[i]),
                    result[i]
                    );
            }
        }
Esempio n. 10
0
        public void Dimension()
        {
            Vector <double> vector1 = Vector <double> .Build.Dense(new double[] { 0, 1, 2, 3 });

            Vector <double> vector2 = Vector <double> .Build.Dense(new double[] { 1, 2, 3, 4 });

            List <NetworkVector> vectors =
                new List <NetworkVector> {
                new NetworkVector(vector1), new NetworkVector(vector2)
            };

            VectorBatch batch = new VectorBatch(vectors);

            Assert.AreEqual(vectors[0].Dimension, batch.Dimension);
        }
Esempio n. 11
0
        public void CanRun()
        {
            Layer layer = new Layer(
                new WeightsMatrix(
                    Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1 }
            })
                    )
                );

            DataVector zeroVector = new DataVector(1);

            VectorBatch result = layer.Run(zeroVector);

            Assert.AreEqual(zeroVector, result);
        }
Esempio n. 12
0
        public void CannotSubractMismatched()
        {
            try
            {
                VectorBatch vb1 = new VectorBatch(Matrix <double> .Build.DenseOfArray(new double[, ] {
                    { 1, 2 }, { 2, 3 }
                }));
                VectorBatch vb2 = new VectorBatch(Matrix <double> .Build.DenseOfArray(new double[, ] {
                    { 2, 3, 4 }, { 3, 4, 5 }
                }));
                VectorBatch vb3 = vb2.Subtract(vb1);

                Assert.Fail("Subtract failed to throw an ArgumentOutOfRangeException.");
            }
            catch (ArgumentOutOfRangeException)
            { }
        }
Esempio n. 13
0
        public void CanSubtract()
        {
            VectorBatch vb1 = new VectorBatch(Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1, 2, 3 }, { 2, 3, 4 }
            }));
            VectorBatch vb2 = new VectorBatch(Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 2, 3, 4 }, { 3, 4, 5 }
            }));
            VectorBatch vb3 = vb2.Subtract(vb1);

            Assert.AreEqual(1, vb3[0, 0]);
            Assert.AreEqual(1, vb3[0, 1]);
            Assert.AreEqual(1, vb3[0, 2]);
            Assert.AreEqual(1, vb3[1, 0]);
            Assert.AreEqual(1, vb3[1, 1]);
            Assert.AreEqual(1, vb3[1, 2]);
        }
Esempio n. 14
0
        public void CanAdd()
        {
            VectorBatch vb1 = new VectorBatch(Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1, 2, 3 }, { 2, 3, 4 }
            }));
            VectorBatch vb2 = new VectorBatch(Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 2, 3, 4 }, { 3, 4, 5 }
            }));
            VectorBatch vb3 = vb1.Add(vb2);

            Assert.AreEqual(3, vb3[0, 0]);
            Assert.AreEqual(5, vb3[0, 1]);
            Assert.AreEqual(7, vb3[0, 2]);
            Assert.AreEqual(5, vb3[1, 0]);
            Assert.AreEqual(7, vb3[1, 1]);
            Assert.AreEqual(9, vb3[1, 2]);
        }
Esempio n. 15
0
        public void RunAfterBackPropIsCorrect()
        {
            VectorBatch result;

            result = wc_2.Run(inputBatch_2);
            VectorBatch inputGradient = wc_2.BackPropagate(gradientBatch2);

            result = wc_2.Run(inputBatch_2);

            VectorBatch resultCheck = new VectorBatch(
                Matrix <double> .Build.DenseOfArray(new double[, ] {
                { -32, -61 }, { -50, -91 }
            })
                );

            Assert.AreEqual(resultCheck, result);
        }
Esempio n. 16
0
 public void CanMake()
 {
     try
     {
         VectorBatch vb1 = new VectorBatch(Matrix <double> .Build.Dense(1, 1));
         VectorBatch vb2 = new VectorBatch(
             Matrix <double> .Build.DenseOfArray(
                 new double[, ] {
             { 1, 2 }, { 2, 3 }
         }
                 )
             );
         VectorBatch vb3 = new VectorBatch(vb1);
     }
     catch (Exception e)
     {
         Assert.Fail("VectorBatch constructor threw an exception: " + e.Message);
     }
 }
Esempio n. 17
0
        public void CanMake_IEnumerable()
        {
            Vector <double> vector1 = Vector <double> .Build.Dense(new double[] { 0, 1, 2, 3 });

            Vector <double> vector2 = Vector <double> .Build.Dense(new double[] { 1, 2, 3, 4 });

            List <NetworkVector> vectors =
                new List <NetworkVector> {
                new NetworkVector(vector1), new NetworkVector(vector2)
            };

            try
            {
                VectorBatch batch = new VectorBatch(vectors);
            }
            catch (Exception e)
            {
                Assert.Fail("VectorBatch constructor threw an exception. Message: " + e.Message);
            }
        }
Esempio n. 18
0
        public void CanMake_Matrix()
        {
            Vector <double> vector1 = Vector <double> .Build.Dense(new double[] { 0, 1, 2, 3 });

            Vector <double> vector2 = Vector <double> .Build.Dense(new double[] { 1, 2, 3, 4 });

            Matrix <double> vectors =
                Matrix <double> .Build.DenseOfRowVectors(
                    new List <Vector <double> > {
                vector1, vector2
            });

            try
            {
                VectorBatch batch = new VectorBatch(vectors);
            }
            catch (Exception e)
            {
                Assert.Fail("VectorBatch constructor threw an exception. Message: " + e.Message);
            }
        }
Esempio n. 19
0
        public void InputGradient()
        {
            Layer layer = new Layer(
                new WeightsMatrix(
                    Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1 }
            })
                    )
                );

            DataVector  zeroVector = new DataVector(1);
            VectorBatch result     = layer.Run(zeroVector);

            DataVector oneVector = new DataVector(
                Vector <double> .Build.DenseOfArray(new double[] { 1 })
                );

            VectorBatch inputGradient      = layer.BackPropagate(oneVector);
            DataVector  inputGradientCheck = oneVector;

            Assert.AreEqual(inputGradientCheck, inputGradient);
        }
Esempio n. 20
0
        public void CanUpdateBatch()
        {
            AdaptationStrategy strategy = new GradientDescent(1.0, 1);

            VectorBatch result = wc_2.Run(input_batch);

            wc_2.BackPropagate(gradient_batch);
            VectorBatch inputGradient = wc_2.InputGradient(gradient_batch);

            wc_2.Update(strategy);


            NetworkVector biasesCheck  = new NetworkVector(new double[] { 8, 7 });
            WeightsMatrix weightsCheck = new WeightsMatrix(new double[, ] {
                { -4, -6, -8 }, { -6, -10, -14 }
            });

            Assert.AreEqual(biasesCheck, wc_2.Biases);
            Assert.AreEqual(weightsCheck, wc_2.Weights);
            for (int i = 0; i < inputGradient.Count; i++)
            {
                Assert.AreEqual(inputgradient_check[i], inputGradient[i]);
            }
        }