Esempio n. 1
0
        public void Bug6162()
        {
            // When UncertianMeasurementSample.FitToPolynomial used Cholesky inversion of (A^T A), this inversion
            // would fail when roundoff errors would made the matrix non-positive-definite. We have now changed
            // to QR decomposition, which is more robust.

            //real data
            double[] X_axis = new double[] { 40270.65625, 40270.6569444444, 40270.6576388888, 40270.6583333332, 40270.6590277776,
                                             40270.659722222, 40270.6604166669, 40270.6611111113, 40270.6618055557, 40270.6625000001 };

            double[] Y_axis = new double[] { 246.824996948242, 246.850006103516, 245.875, 246.225006103516, 246.975006103516,
                                             247.024993896484, 246.949996948242, 246.875, 247.5, 247.100006103516 };

            UncertainMeasurementSample DataSet = new UncertainMeasurementSample();

            for (int i = 0; i < 10; i++)
            {
                DataSet.Add(X_axis[i], Y_axis[i], 1);
            }

            UncertainMeasurementFitResult DataFit = DataSet.FitToPolynomial(3);

            BivariateSample bs = new BivariateSample();

            for (int i = 0; i < 10; i++)
            {
                bs.Add(X_axis[i], Y_axis[i]);
            }
            PolynomialRegressionResult bsFit = bs.PolynomialRegression(3);

            foreach (Parameter p in bsFit.Parameters)
            {
                Console.WriteLine(p);
            }
        }
Esempio n. 2
0
        public void FitDataToLineUncertaintyTest()
        {
            double[] xs = TestUtilities.GenerateUniformRealValues(0.0, 10.0, 10);
            Func <double, double> fv = delegate(double x) {
                return(2.0 * x - 1.0);
            };
            Func <double, double> fu = delegate(double x) {
                return(1.0 + x);
            };

            MultivariateSample sample     = new MultivariateSample(2);
            SymmetricMatrix    covariance = new SymmetricMatrix(2);

            // create a bunch of small data sets
            for (int i = 0; i < 100; i++)
            {
                UncertainMeasurementSample    data = CreateDataSet(xs, fv, fu, i);
                UncertainMeasurementFitResult fit  = data.FitToLine();

                sample.Add(fit.Parameters.ValuesVector);
                covariance = fit.Parameters.CovarianceMatrix;
                // because it depends only on the x's and sigmas, the covariance is always the same

                Console.WriteLine("cov_00 = {0}", covariance[0, 0]);
            }

            // the measured covariances should agree with the claimed covariances
            //Assert.IsTrue(sample.PopulationCovariance(0,0).ConfidenceInterval(0.95).ClosedContains(covariance[0,0]));
            //Assert.IsTrue(sample.PopulationCovariance(0,1).ConfidenceInterval(0.95).ClosedContains(covariance[0,1]));
            //Assert.IsTrue(sample.PopulationCovariance(1,0).ConfidenceInterval(0.95).ClosedContains(covariance[1,0]));
            //Assert.IsTrue(sample.PopulationCovariance(1,1).ConfidenceInterval(0.95).ClosedContains(covariance[1,1]));
        }
Esempio n. 3
0
        public void FitDataToProportionalityTest()
        {
            Interval r = Interval.FromEndpoints(0.0, 0.1);
            Func <double, double> fv = delegate(double x) {
                return(0.5 * x);
            };
            Func <double, double> fu = delegate(double x) {
                return(0.02);
            };
            UncertainMeasurementSample set = CreateDataSet(r, fv, fu, 20);

            // fit to proportionality
            UncertainMeasurementFitResult prop = set.FitToProportionality();

            Assert.IsTrue(prop.Parameters.Count == 1);
            Assert.IsTrue(prop.Parameters[0].Estimate.ConfidenceInterval(0.95).ClosedContains(0.5));
            Assert.IsTrue(prop.GoodnessOfFit.Probability > 0.05);

            // fit to line
            UncertainMeasurementFitResult line = set.FitToLine();

            Assert.IsTrue(line.Parameters.Count == 2);

            // line's intercept should be compatible with zero and slope with proportionality constant
            Assert.IsTrue(line.Parameters[0].Estimate.ConfidenceInterval(0.95).ClosedContains(0.0));
            Assert.IsTrue(line.Parameters[1].Estimate.ConfidenceInterval(0.95).ClosedContains(prop.Parameters[0].Estimate.Value));

            // the fit should be better, but not too much better
            Assert.IsTrue(line.GoodnessOfFit.Statistic < prop.GoodnessOfFit.Statistic);
        }
Esempio n. 4
0
        public void FitDataToLinearFunctionTest()
        {
            // create a data set from a linear combination of sine and cosine
            Interval r = Interval.FromEndpoints(-4.0, 6.0);

            double[] c = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
            Func <double, double> fv = delegate(double x) {
                return(2.0 * Math.Cos(x) + 1.0 * Math.Sin(x));
            };
            Func <double, double> fu = delegate(double x) {
                return(0.1 + 0.1 * Math.Abs(x));
            };
            UncertainMeasurementSample set = CreateDataSet(r, fv, fu, 20, 2);

            // fit the data set to a linear combination of sine and cosine
            Func <double, double>[] fs = new Func <double, double>[]
            { delegate(double x) { return(Math.Cos(x)); }, delegate(double x) { return(Math.Sin(x)); } };
            UncertainMeasurementFitResult result = set.FitToLinearFunction(fs);

            // the fit should be right right dimension
            Assert.IsTrue(result.Parameters.Count == 2);

            // the coefficients should match
            Assert.IsTrue(result.Parameters[0].Estimate.ConfidenceInterval(0.95).ClosedContains(2.0));
            Assert.IsTrue(result.Parameters[1].Estimate.ConfidenceInterval(0.95).ClosedContains(1.0));

            // diagonal covarainces should match errors
            Assert.IsTrue(TestUtilities.IsNearlyEqual(Math.Sqrt(result.Parameters.CovarianceMatrix[0, 0]), result.Parameters[0].Estimate.Uncertainty));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(Math.Sqrt(result.Parameters.CovarianceMatrix[1, 1]), result.Parameters[1].Estimate.Uncertainty));
        }
Esempio n. 5
0
        public void FitToFunctionPolynomialCompatibilityTest()
        {
            // specify a cubic function
            Interval r = Interval.FromEndpoints(-10.0, 10.0);
            Func <double, double> fv = delegate(double x) {
                return(0.0 - 1.0 * x + 2.0 * x * x - 3.0 * x * x * x);
            };
            Func <double, double> fu = delegate(double x) {
                return(1.0 + 0.5 * Math.Cos(x));
            };

            // create a data set from it
            UncertainMeasurementSample set = CreateDataSet(r, fv, fu, 60);

            // fit it to a cubic polynomial
            UncertainMeasurementFitResult pFit = set.FitToPolynomial(3);

            // fit it to a cubic polynomial
            Func <double[], double, double> ff = delegate(double[] p, double x) {
                return(p[0] + p[1] * x + p[2] * x * x + p[3] * x * x * x);
            };
            UncertainMeasurementFitResult fFit = set.FitToFunction(ff, new double[] { 0, 0, 0, 0 });

            // dimension
            Assert.IsTrue(pFit.Parameters.Count == fFit.Parameters.Count);
            // chi squared
            Assert.IsTrue(TestUtilities.IsNearlyEqual(pFit.GoodnessOfFit.Statistic, fFit.GoodnessOfFit.Statistic, Math.Sqrt(TestUtilities.TargetPrecision)));
            // don't demand super-high precision agreement of parameters and covariance matrix
            // parameters
            Assert.IsTrue(TestUtilities.IsNearlyEqual(pFit.Parameters.ValuesVector, fFit.Parameters.ValuesVector, Math.Pow(TestUtilities.TargetPrecision, 0.3)));
            // covariance
            Assert.IsTrue(TestUtilities.IsNearlyEqual(pFit.Parameters.CovarianceMatrix, fFit.Parameters.CovarianceMatrix, Math.Pow(TestUtilities.TargetPrecision, 0.3)));
        }
Esempio n. 6
0
        public void FitDataToPolynomialChiSquaredTest()
        {
            // we want to make sure that the chi^2 values we are producing from polynomial fits are distributed as expected

            // create a sample to hold chi^2 values
            Sample chis = new Sample();

            // define a model
            Interval r = Interval.FromEndpoints(-5.0, 15.0);
            Func <double, double> fv = delegate(double x) {
                return(1.0 * x - 2.0 * x * x);
            };
            Func <double, double> fu = delegate(double x) {
                return(1.0 + 0.5 * Math.Sin(x));
            };

            // draw 50 data sets from the model and fit year
            // store the resulting chi^2 value in the chi^2 set
            for (int i = 0; i < 50; i++)
            {
                UncertainMeasurementSample    xs  = CreateDataSet(r, fv, fu, 10, i);
                UncertainMeasurementFitResult fit = xs.FitToPolynomial(2);
                double chi = fit.GoodnessOfFit.Statistic;
                chis.Add(chi);
            }

            // sanity check the sample
            Assert.IsTrue(chis.Count == 50);

            // test whether the chi^2 values are distributed as expected
            ContinuousDistribution chiDistribution = new ChiSquaredDistribution(7);
            TestResult             ks = chis.KolmogorovSmirnovTest(chiDistribution);

            Assert.IsTrue(ks.Probability > 0.05);
        }
Esempio n. 7
0
        public void FitDataToPolynomialUncertaintiesTest()
        {
            // make sure the reported uncertainties it fit parameters really represent their standard deviation,
            // and that the reported off-diagonal elements really represent their correlations

            double[] xs = TestUtilities.GenerateUniformRealValues(-1.0, 2.0, 10);
            Func <double, double> fv = delegate(double x) {
                return(0.0 + 1.0 * x + 2.0 * x * x);
            };
            Func <double, double> fu = delegate(double x) {
                return(0.5);
            };

            // keep track of best-fit parameters and claimed parameter covariances
            MultivariateSample sample = new MultivariateSample(3);

            // generate 50 small data sets and fit each
            UncertainMeasurementFitResult[] fits = new UncertainMeasurementFitResult[50];
            for (int i = 0; i < fits.Length; i++)
            {
                UncertainMeasurementSample set = CreateDataSet(xs, fv, fu, 314159 + i);
                fits[i] = set.FitToPolynomial(2);
                sample.Add(fits[i].Parameters.ValuesVector);
            }

            // check that parameters agree
            for (int i = 0; i < 3; i++)
            {
                Console.WriteLine(sample.Column(i).PopulationMean);
            }

            // for each parameter, verify that the standard deviation of the reported values agrees with the (average) reported uncertainty
            double[] pMeans = new double[3];
            for (int i = 0; i <= 2; i++)
            {
                Sample values        = new Sample();
                Sample uncertainties = new Sample();
                for (int j = 0; j < fits.Length; j++)
                {
                    UncertainValue p = fits[j].Parameters[i].Estimate;
                    values.Add(p.Value);
                    uncertainties.Add(p.Uncertainty);
                }
                pMeans[i] = values.Mean;
                Assert.IsTrue(values.PopulationStandardDeviation.ConfidenceInterval(0.95).ClosedContains(uncertainties.Mean));
            }
        }
Esempio n. 8
0
        public void FitDataToFunctionTest()
        {
            // create a data set from a nonlinear function

            /*
             * Interval r = Interval.FromEndpoints(-3.0, 5.0);
             * double[] c = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
             * Function<double, double> fv = delegate(double x) {
             *  return (3.0 * Math.Cos(2.0 * Math.PI * x / 2.0 - 1.0));
             * };
             * Function<double, double> fu = delegate(double x) {
             *  return (0.1 + 0.1 * Math.Abs(x));
             * };
             * DataSet set = CreateDataSet(r, fv, fu, 20, 2);
             */

            UncertainMeasurementSample set = new UncertainMeasurementSample();

            set.Add(new UncertainMeasurement <double>(1.0, 1.0, 0.1));
            set.Add(new UncertainMeasurement <double>(2.0, 0.7, 0.1));
            set.Add(new UncertainMeasurement <double>(3.0, 0.0, 0.1));
            set.Add(new UncertainMeasurement <double>(4.0, -0.7, 0.1));
            set.Add(new UncertainMeasurement <double>(5.0, -1.0, 0.1));
            set.Add(new UncertainMeasurement <double>(6.0, -0.7, 0.1));
            set.Add(new UncertainMeasurement <double>(7.0, 0.0, 0.1));
            set.Add(new UncertainMeasurement <double>(8.0, 0.7, 0.1));
            set.Add(new UncertainMeasurement <double>(9.0, 1.0, 0.1));

            // fit it to a parameterized fit function

            /*
             * Function<double[], double, double> ff = delegate(double[] p, double x) {
             *  return (p[0] * Math.Cos(2.0 * Math.PI / p[1] + p[2]));
             * };
             */
            Func <double[], double, double> ff = delegate(double[] p, double x) {
                //Console.WriteLine("    p[0]={0}, x={1}", p[0], x);
                return(p[1] * Math.Cos(x / p[0] + p[2]));
                //return (x / p[0]);
            };
            UncertainMeasurementFitResult fit = set.FitToFunction(ff, new double[] { 1.3, 1.1, 0.1 });
        }
Esempio n. 9
0
        public void FitDataToPolynomialTest()
        {
            Interval              r  = Interval.FromEndpoints(-10.0, 10.0);
            Polynomial            p  = Polynomial.FromCoefficients(1.0, -2.0, 3.0, -4.0, 5.0, -6.0);
            Func <double, double> fu = delegate(double x) {
                return(1.0 + 0.5 * Math.Cos(x));
            };

            UncertainMeasurementSample set = CreateDataSet(r, p.Evaluate, fu, 50);

            Assert.IsTrue(set.Count == 50);

            // fit to an appropriate polynomial
            UncertainMeasurementFitResult poly = set.FitToPolynomial(5);

            // the coefficients should match
            for (int i = 0; i < poly.Parameters.Count; i++)
            {
                Assert.IsTrue(poly.Parameters[i].Estimate.ConfidenceInterval(0.95).ClosedContains(p.Coefficient(i)));
            }

            // the fit should be good
            Assert.IsTrue(poly.GoodnessOfFit.Probability > 0.05);

            // fit to a lower order polynomial
            UncertainMeasurementFitResult low = set.FitToPolynomial(4);

            // the fit should be bad
            Assert.IsTrue(low.GoodnessOfFit.Statistic > poly.GoodnessOfFit.Statistic);
            Assert.IsTrue(low.GoodnessOfFit.Probability < 0.05);

            // fit to a higher order polynomial
            UncertainMeasurementFitResult high = set.FitToPolynomial(6);

            // the higher order coefficients should be compatible with zero
            Assert.IsTrue(high.Parameters[6].Estimate.ConfidenceInterval(0.95).ClosedContains(0.0));

            // the fit should be better, but not too much better
            Assert.IsTrue(high.GoodnessOfFit.Statistic < poly.GoodnessOfFit.Statistic);
        }
Esempio n. 10
0
        public void FitDataToLineTest()
        {
            Interval r = Interval.FromEndpoints(0.0, 10.0);
            Func <double, double> fv = delegate(double x) {
                return(2.0 * x - 1.0);
            };
            Func <double, double> fu = delegate(double x) {
                return(1.0 + x);
            };
            UncertainMeasurementSample data = CreateDataSet(r, fv, fu, 20);


            // sanity check the data set
            Assert.IsTrue(data.Count == 20);

            // fit to a line
            UncertainMeasurementFitResult line = data.FitToLine();

            Assert.IsTrue(line.Parameters.Count == 2);
            Assert.IsTrue(line.Parameters[0].Estimate.ConfidenceInterval(0.95).ClosedContains(-1.0));
            Assert.IsTrue(line.Parameters[1].Estimate.ConfidenceInterval(0.95).ClosedContains(2.0));
            Assert.IsTrue(line.GoodnessOfFit.Probability > 0.05);

            // correlation coefficient should be related to covariance as expected
            //Assert.IsTrue(TestUtilities.IsNearlyEqual(line.Parameters.CorrelationCoefficient(0,1),line.Covariance(0,1)/line.Parameter(0).Uncertainty/line.Parameter(1).Uncertainty));

            // fit to a 1st order polynomial and make sure it agrees
            UncertainMeasurementFitResult poly = data.FitToPolynomial(1);

            Assert.IsTrue(poly.Parameters.Count == 2);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(poly.Parameters.ValuesVector, line.Parameters.ValuesVector));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(poly.Parameters.CovarianceMatrix, line.Parameters.CovarianceMatrix));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(poly.GoodnessOfFit.Statistic, line.GoodnessOfFit.Statistic));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(poly.GoodnessOfFit.Probability, line.GoodnessOfFit.Probability));

            // fit to a constant; the result should be poor
            UncertainMeasurementFitResult constant = data.FitToConstant();

            Assert.IsTrue(constant.GoodnessOfFit.Probability < 0.05);
        }