public int currentTrialForEdit = 0; // keeps track of which trial index is currently being edited while in Fitness/Mini-game Panels // For Each Trial: // MiniGame Class to store gametype and settings // Fitness Function Class w/ Fitness component list and settings // Constructor Functions: public Player() { DebugBot.DebugFunctionCall("Player; Player() Constructor!; ", debugFunctionCalls); InitializeNewPopulation(); masterTrialsList = new List<Trial>(); Trial newTrial = new Trial(this); // make trials list one member long, with a None mini-game value masterTrialsList.Add(newTrial); masterCupid = new CrossoverManager(); dataManager = new DataManager(this); graphKing = new TheGraphKing(); //newTrial.playerRef = this; }
public void InitializeLoadedPopulation() { // Assumes template has been set from defaults! ResetRepresentativesList(); fitnessManager.InitializeLoadedData(agentGenomeList.Count); graphKing = new TheGraphKing(); // ENV: //ResetRepresentativesList(); // Fitness Manager //fitnessManager.InitializeLoadedData(popSize); // Training Settings Manager: // -- so simple at this point no init is needed, it's just 2 floats }
public int currentTrialForEdit = 0; // keeps track of which trial index is currently being edited while in Fitness/Mini-game Panels // For Each Trial: // MiniGame Class to store gametype and settings // Fitness Function Class w/ Fitness component list and settings // Constructor Functions: public Player() { DebugBot.DebugFunctionCall("Player; Player() Constructor!; ", debugFunctionCalls); InitializeNewPopulation(); masterTrialsList = new List <Trial>(); Trial newTrial = new Trial(this); // make trials list one member long, with a None mini-game value masterTrialsList.Add(newTrial); masterCupid = new CrossoverManager(); dataManager = new DataManager(this); graphKing = new TheGraphKing(); //newTrial.playerRef = this; }
// Representative system will be expanded later - for now, just defaults to Top # of performers public PlayerPopulation(Challenge.Type challengeType, BodyGenome bodyTemplate, int numGenomes, int numBaseline, int numReps) { bodyGenomeTemplate = new BodyGenome(); bodyGenomeTemplate.CopyBodyGenomeFromTemplate(bodyTemplate); graphKing = new TheGraphKing(); popSize = numGenomes; this.numBaseline = numBaseline; // Create blank AgentGenomes for the standard population agentGenomeList = new List <AgentGenome>(); historicGenomePool = new List <AgentGenome>(); baselineGenomePool = new List <AgentGenome>(); for (int j = 0; j < numGenomes; j++) { AgentGenome agentGenome = new AgentGenome(j); agentGenome.InitializeBodyGenomeFromTemplate(bodyGenomeTemplate); agentGenome.InitializeRandomBrainFromCurrentBody(0.0f); agentGenomeList.Add(agentGenome); } RepopulateBaselineGenomes(); AppendBaselineGenomes(); // Representatives: numPerformanceReps = numReps; ResetRepresentativesList(); historicGenomePool.Add(agentGenomeList[0]); // init fitnessManager = new FitnessManager(); SetUpDefaultFitnessComponents(challengeType, fitnessManager); fitnessManager.ResetHistoricalData(); fitnessManager.ResetCurrentHistoricalDataLists(); fitnessManager.InitializeForNewGeneration(agentGenomeList.Count); trainingSettingsManager = new TrainingSettingsManager(0.01f, 0.8f, 0.2f, 0.005f); }