Esempio n. 1
0
            public override Tensor log_prob(Tensor value)
            {
                value = value.@long().unsqueeze(-1);
                var valLogPmf = torch.broadcast_tensors(value, logits);

                value = valLogPmf[0][TensorIndex.Ellipsis, TensorIndex.Slice(null, 1)];
                return(valLogPmf[1].gather(-1, value).squeeze(-1));
            }
Esempio n. 2
0
        static (Tensor, Tensor) GetBatch(Tensor source, int index, int bptt)
        {
            var len    = Math.Min(bptt, source.shape[0] - 1 - index);
            var data   = source[TensorIndex.Slice(index, index + len)];
            var target = source[TensorIndex.Slice(index + 1, index + 1 + len)].reshape(-1);

            return(data, target);
        }
Esempio n. 3
0
        private static List <Tensor> LoadImages(IList <string> images, int batchSize, int channels, int height, int width)
        {
            List <Tensor> tensors = new List <Tensor>();

            var  imgSize = channels * height * width;
            bool shuffle = false;

            Random rnd     = new Random();
            var    indices = !shuffle?
                             Enumerable.Range(0, images.Count).ToArray() :
                                 Enumerable.Range(0, images.Count).OrderBy(c => rnd.Next()).ToArray();


            // Go through the data and create tensors
            for (var i = 0; i < images.Count;)
            {
                var take = Math.Min(batchSize, Math.Max(0, images.Count - i));

                if (take < 1)
                {
                    break;
                }

                var dataTensor = torch.zeros(new long[] { take, imgSize }, ScalarType.Byte);

                // Take
                for (var j = 0; j < take; j++)
                {
                    var idx      = indices[i++];
                    var lblStart = idx * (1 + imgSize);
                    var imgStart = lblStart + 1;

                    using (var stream = new SKManagedStream(File.OpenRead(images[idx])))
                        using (var bitmap = SKBitmap.Decode(stream)) {
                            using (var inputTensor = torch.tensor(GetBytesWithoutAlpha(bitmap))) {
                                Tensor finalized = inputTensor;

                                var nz = inputTensor.count_nonzero().DataItem <long>();

                                if (bitmap.Width != width || bitmap.Height != height)
                                {
                                    var t = inputTensor.reshape(1, channels, bitmap.Height, bitmap.Width);
                                    finalized = torchvision.transforms.functional.resize(t, height, width).reshape(imgSize);
                                }

                                dataTensor.index_put_(finalized, TensorIndex.Single(j));
                            }
                        }
                }

                tensors.Add(dataTensor.reshape(take, channels, height, width));
                dataTensor.Dispose();
            }

            return(tensors);
        }
Esempio n. 4
0
            public PositionalEncoding(long dmodel, double dropout, int maxLen = 5000) : base("PositionalEncoding")
            {
                this.dropout = Dropout(dropout);
                var pe       = torch.zeros(new long[] { maxLen, dmodel });
                var position = torch.arange(0, maxLen, 1).unsqueeze(1);
                var divTerm  = (torch.arange(0, dmodel, 2) * (-Math.Log(10000.0) / dmodel)).exp();

                pe[TensorIndex.Ellipsis, TensorIndex.Slice(0, null, 2)] = (position * divTerm).sin();
                pe[TensorIndex.Ellipsis, TensorIndex.Slice(1, null, 2)] = (position * divTerm).cos();
                this.pe = pe.unsqueeze(0).transpose(0, 1);

                RegisterComponents();
            }
Esempio n. 5
0
        public static Tensor crop(this Tensor image, int top, int left, int height, int width)
        {
            var  dims = image.Dimensions;
            var  hoffset = dims - 2;
            long h = image.shape[hoffset], w = image.shape[hoffset + 1];

            var right  = left + width;
            var bottom = top + height;

            if (left < 0 || top < 0 || right > w || bottom > h)
            {
                var slice = image.index(TensorIndex.Ellipsis, TensorIndex.Slice(Math.Max(top, 0), bottom), TensorIndex.Slice(Math.Max(left, 0), right));

                var padding_ltrb = new long[] { Math.Max(-left, 0), Math.Max(-top, 0), Math.Max(right - w, 0), Math.Max(bottom - h, 0) };

                return(TorchSharp.torch.nn.functional.pad(slice, padding_ltrb));
            }

            return(image.index(TensorIndex.Ellipsis, TensorIndex.Slice(top, bottom), TensorIndex.Slice(left, right)));
        }
Esempio n. 6
0
 public override Tensor forward(Tensor t)
 {
     using var x = t + pe[TensorIndex.Slice(null, t.shape[0]), TensorIndex.Slice()];
     return(dropout.forward(x));
 }