Esempio n. 1
0
        void TestOldSavingAndLoading()
        {
            var modelFile = "model_matmul/frozen_saved_model.pb";

            var dataView = ComponentCreation.CreateDataView(Env,
                                                            new List <TestData>(new TestData[] {
                new TestData()
                {
                    a = new[] { 1.0f, 2.0f, 3.0f, 4.0f },
                    b = new[] { 1.0f, 2.0f, 3.0f, 4.0f }
                },
                new TestData()
                {
                    a = new[] { 2.0f, 2.0f, 2.0f, 2.0f },
                    b = new[] { 3.0f, 3.0f, 3.0f, 3.0f }
                },
                new TestData()
                {
                    a = new[] { 5.0f, 6.0f, 10.0f, 12.0f },
                    b = new[] { 10.0f, 8.0f, 6.0f, 6.0f }
                }
            }));
            var est         = new TensorFlowEstimator(Env, modelFile, new[] { "a", "b" }, new[] { "c" });
            var transformer = est.Fit(dataView);
            var result      = transformer.Transform(dataView);
            var resultRoles = new RoleMappedData(result);

            using (var ms = new MemoryStream())
            {
                TrainUtils.SaveModel(Env, Env.Start("saving"), ms, null, resultRoles);
                ms.Position = 0;
                var loadedView = ModelFileUtils.LoadTransforms(Env, dataView, ms);
                ValidateTensorFlowTransformer(loadedView);
            }
        }
Esempio n. 2
0
        void TestSimpleCase()
        {
            var modelFile = "model_matmul/frozen_saved_model.pb";

            var dataView = ComponentCreation.CreateDataView(Env,
                                                            new List <TestData>(new TestData[] {
                new TestData()
                {
                    a = new[] { 1.0f, 2.0f, 3.0f, 4.0f },
                    b = new[] { 1.0f, 2.0f, 3.0f, 4.0f }
                },
                new TestData()
                {
                    a = new[] { 2.0f, 2.0f, 2.0f, 2.0f },
                    b = new[] { 3.0f, 3.0f, 3.0f, 3.0f }
                }
            }));

            var xyData = new List <TestDataXY> {
                new TestDataXY()
                {
                    A = new float[4], B = new float[4]
                }
            };
            var stringData = new List <TestDataDifferntType> {
                new TestDataDifferntType()
                {
                    a = new string[4], b = new string[4]
                }
            };
            var sizeData = new List <TestDataSize> {
                new TestDataSize()
                {
                    a = new float[2], b = new float[2]
                }
            };
            var pipe = new TensorFlowEstimator(Env, modelFile, new[] { "a", "b" }, new[] { "c" });

            var invalidDataWrongNames      = ComponentCreation.CreateDataView(Env, xyData);
            var invalidDataWrongTypes      = ComponentCreation.CreateDataView(Env, stringData);
            var invalidDataWrongVectorSize = ComponentCreation.CreateDataView(Env, sizeData);

            TestEstimatorCore(pipe, dataView, invalidInput: invalidDataWrongNames);
            TestEstimatorCore(pipe, dataView, invalidInput: invalidDataWrongTypes);

            pipe.GetOutputSchema(SchemaShape.Create(invalidDataWrongVectorSize.Schema));
            try
            {
                pipe.Fit(invalidDataWrongVectorSize);
                Assert.False(true);
            }
            catch (ArgumentOutOfRangeException) { }
            catch (InvalidOperationException) { }
        }
Esempio n. 3
0
        static void Main(string[] args)
        {
            Console.Write("Image directory: ");
            var imagePath = Console.ReadLine();

            var context = new MLContext();

            // this is necessary for calling Fit() later
            var fakeData = context.Data.ReadFromEnumerable(new List <InputModel>());

            // loads images from disk
            var imageLoadingEstimator = new ImageLoadingEstimator(
                context,
                imagePath,
                ("ImageData", nameof(InputModel.Path)));

            // resizes images to required size
            var imageResizingEstimator = new ImageResizingEstimator(
                context,
                "ImageResized",
                64,
                64,
                "ImageData",
                ImageResizerTransformer.ResizingKind.IsoPad);

            // transforms images to float vectors
            var imagePixelExtractingEstimator = new ImagePixelExtractingEstimator(context,
                                                                                  new ImagePixelExtractorTransformer.ColumnInfo(
                                                                                      "input_1",
                                                                                      "ImageResized",
                                                                                      ImagePixelExtractorTransformer.ColorBits.Rgb, interleave: true,
                                                                                      scale: 1 / 255f));

            // loads the TF model from disk
            var tensorFlowEstimator = new TensorFlowEstimator(
                context,
                new[] { "final_layer/Sigmoid" },
                new[] { "input_1" },
                "Model/MalariaModel.pb");

            // create a ML pipeline
            var pipeline = imageLoadingEstimator
                           .Append(imageResizingEstimator)
                           .Append(imagePixelExtractingEstimator)
                           .Append(tensorFlowEstimator);

            // fit, otherwise we can't create a prediction engine
            var model = pipeline.Fit(fakeData);

            var predictor = model.CreatePredictionEngine <InputModel, OutputModel>(context);

            foreach (var file in Directory.GetFiles(imagePath, "*.png").Take(100).ToList())
            {
                var newName = ImageUtilities.ResizeImage(file, 64, 64, imagePath);

                var prediction = predictor.Predict(new InputModel {
                    Path = newName
                });

                Console.WriteLine($"{Path.GetFileName(file)}: {(prediction.IsInfected() ? "Infected" : "Healthy")}");
            }

            Console.ReadLine();
        }