Esempio n. 1
0
        public void Solve()
        {
            Problem problem = new Problem(new ProblemInfo {
                Mesh = LinearMesh, SolverType = Solver.SolverType
            });

            problem.Solve();

            Q = problem.Q;

            MatrixPortrait MP = new MatrixPortrait();

            PB.Build(MP);
            IMatrix A = new SymmetricSparseMatrix(Mesh.NodeCount, MP);

            double[] B = new double[Mesh.NodeCount];

            CurrentIter = 0;
            Diff        = 1.0;
            QDiff       = 1.0;
            while (CurrentIter < MaxIters && Diff >= Eps && QDiff >= Delta)
            {
                // SLAE Solution
                NSB.Build(A, B, Q);
                prevQ = Q;
                Q     = Solver.Solve(A, B);

                QDiff = VectorUtils.RelativeError(prevQ, Q);

                A.Clear();
                Array.Fill(B, 0.0);

                if (DoOptimization)
                {
                    // Optimization
                    double w = OptimizeQ(A, B);

                    // Calculating new Q
                    for (int i = 0; i < Q.Length; i++)
                    {
                        Q[i] = Q[i] * w + prevQ[i] * (1.0 - w);
                    }
                }

                // Calculate diff
                NSB.Build(A, B, Q);
                A.Multiply(Q, Aq);

                Diff = VectorUtils.RelativeError(Aq, B);
                CurrentIter++;

                Console.WriteLine($"Iter: {CurrentIter}, Diff: {Diff}, QDiff: {QDiff}");

                A.Clear();
                Array.Fill(B, 0.0);
                Array.Fill(Aq, 0.0);
            }
        }
        public static void test_Matrices()
        {
            int                   N  = 10;
            DenseMatrix           M1 = new DenseMatrix(N, N);
            SymmetricSparseMatrix M2 = new SymmetricSparseMatrix();

            for (int i = 0; i < N; ++i)
            {
                for (int j = i; j < N; ++j)
                {
                    if (i == j)
                    {
                        M1.Set(i, i, 1);
                        M2.Set(i, i, 1);
                    }
                    else if (j % 2 != 0)
                    {
                        double d = Math.Sqrt(i + j);
                        M1.Set(i, j, d);
                        M1.Set(j, i, d);
                        M2.Set(i, j, d);
                    }
                }
            }

            double[] X = new double[N], b1 = new double[N], b2 = new double[N];
            for (int i = 0; i < N; ++i)
            {
                X[i] = (double)i / (double)N;
            }

            M1.Multiply(X, b1);
            M2.Multiply(X, b2);

            for (int i = 0; i < N; ++i)
            {
                Debug.Assert(MathUtil.EpsilonEqual(b1[i], b2[i]));
            }
        }
Esempio n. 3
0
        public void Initialize()
        {
            ToMeshV = new int[Mesh.MaxVertexID];
            ToIndex = new int[Mesh.MaxVertexID];
            N       = 0;
            foreach (int vid in Mesh.VertexIndices())
            {
                ToMeshV[N]   = vid;
                ToIndex[vid] = N;
                N++;
            }

            Px         = new double[N];
            Py         = new double[N];
            Pz         = new double[N];
            nbr_counts = new int[N];
            M          = new SymmetricSparseMatrix();

            for (int i = 0; i < N; ++i)
            {
                int      vid = ToMeshV[i];
                Vector3D v   = Mesh.GetVertex(vid);
                Px[i]         = v.x; Py[i] = v.y; Pz[i] = v.z;
                nbr_counts[i] = Mesh.GetVtxEdgeCount(vid);
            }

            // construct laplacian matrix
            for (int i = 0; i < N; ++i)
            {
                int vid = ToMeshV[i];
                int n   = nbr_counts[i];

                double sum_w = 0;
                foreach (int nbrvid in Mesh.VtxVerticesItr(vid))
                {
                    int j  = ToIndex[nbrvid];
                    int n2 = nbr_counts[j];

                    // weight options
                    //double w = -1;
                    double w = -1.0 / Math.Sqrt(n + n2);
                    //double w = -1.0 / n;

                    M.Set(i, j, w);
                    sum_w += w;
                }
                sum_w = -sum_w;
                M.Set(vid, vid, sum_w);
            }

            // compute laplacian vectors of initial mesh positions
            MLx = new double[N];
            MLy = new double[N];
            MLz = new double[N];
            M.Multiply(Px, MLx);
            M.Multiply(Py, MLy);
            M.Multiply(Pz, MLz);

            // allocate memory for internal buffers
            Preconditioner = new DiagonalMatrix(N);
            WeightsM       = new DiagonalMatrix(N);
            Cx             = new double[N]; Cy = new double[N]; Cz = new double[N];
            Bx             = new double[N]; By = new double[N]; Bz = new double[N];
            Sx             = new double[N]; Sy = new double[N]; Sz = new double[N];

            UpdateForSolve();
        }
Esempio n. 4
0
        // Result must be as large as Mesh.MaxVertexID
        public bool Solve(Vector3D[] Result)
        {
            UpdateForSolve();

            // use initial positions as initial solution.
            Array.Copy(Px, Sx, N);
            Array.Copy(Py, Sy, N);
            Array.Copy(Pz, Sz, N);


            Action <double[], double[]> CombinedMultiply = (X, B) => {
                M.Multiply(X, B);
                for (int i = 0; i < N; ++i)
                {
                    B[i] += WeightsM[i, i] * X[i];
                }
            };

            SparseSymmetricCG SolverX = new SparseSymmetricCG()
            {
                B                  = Bx, X = Sx,
                MultiplyF          = CombinedMultiply, PreconditionMultiplyF = Preconditioner.Multiply,
                UseXAsInitialGuess = true
            };
            SparseSymmetricCG SolverY = new SparseSymmetricCG()
            {
                B                  = By, X = Sy,
                MultiplyF          = CombinedMultiply, PreconditionMultiplyF = Preconditioner.Multiply,
                UseXAsInitialGuess = true
            };
            SparseSymmetricCG SolverZ = new SparseSymmetricCG()
            {
                B                  = Bz, X = Sz,
                MultiplyF          = CombinedMultiply, PreconditionMultiplyF = Preconditioner.Multiply,
                UseXAsInitialGuess = true
            };

            SparseSymmetricCG[] solvers = new SparseSymmetricCG[3] {
                SolverX, SolverY, SolverZ
            };
            bool[] ok      = new bool[3];
            int[]  indices = new int[3] {
                0, 1, 2
            };

            // preconditioned solve is slower =\
            //Action<int> SolveF = (i) => {  ok[i] = solvers[i].SolvePreconditioned(); };
            Action <int> SolveF = (i) => { ok[i] = solvers[i].Solve(); };

            gParallel.ForEach(indices, SolveF);

            if (ok[0] == false || ok[1] == false || ok[2] == false)
            {
                return(false);
            }

            for (int i = 0; i < N; ++i)
            {
                int vid = ToMeshV[i];
                Result[vid] = new Vector3D(Sx[i], Sy[i], Sz[i]);
            }

            // apply post-fixed constraints
            if (HavePostFixedConstraints)
            {
                foreach (var constraint in SoftConstraints)
                {
                    if (constraint.Value.PostFix)
                    {
                        int vid = constraint.Key;
                        Result[vid] = constraint.Value.Position;
                    }
                }
            }

            return(true);
        }
Esempio n. 5
0
        public void Initialize()
        {
            ToMeshV = new int[Mesh.MaxVertexID];
            ToIndex = new int[Mesh.MaxVertexID];
            N       = 0;
            foreach (int vid in Mesh.VertexIndices())
            {
                ToMeshV[N]   = vid;
                ToIndex[vid] = N;
                N++;
            }

            Px         = new double[N];
            Py         = new double[N];
            Pz         = new double[N];
            nbr_counts = new int[N];
            M          = new SymmetricSparseMatrix();

            for (int i = 0; i < N; ++i)
            {
                int      vid = ToMeshV[i];
                Vector3D v   = Mesh.GetVertex(vid);
                Px[i]         = v.x; Py[i] = v.y; Pz[i] = v.z;
                nbr_counts[i] = Mesh.GetVtxEdgeCount(vid);
            }

            // construct laplacian matrix
            for (int i = 0; i < N; ++i)
            {
                int vid = ToMeshV[i];
                int n   = nbr_counts[i];

                double sum_w = 0;
                foreach (int nbrvid in Mesh.VtxVerticesItr(vid))
                {
                    int j  = ToIndex[nbrvid];
                    int n2 = nbr_counts[j];

                    // weight options
                    //double w = -1;
                    double w = -1.0 / Math.Sqrt(n + n2);
                    //double w = -1.0 / n;

                    M.Set(i, j, w);
                    sum_w += w;
                }
                sum_w = -sum_w;
                M.Set(vid, vid, sum_w);
            }

            // transpose(L) * L, but matrix is symmetric...
            if (UseSoftConstraintNormalEquations)
            {
                //M = M.Multiply(M);
                M = M.Square();        // only works if M is symmetric
            }

            // construct packed version of M matrix
            PackedM = new PackedSparseMatrix(M);

            // compute laplacian vectors of initial mesh positions
            MLx = new double[N];
            MLy = new double[N];
            MLz = new double[N];
            M.Multiply(Px, MLx);
            M.Multiply(Py, MLy);
            M.Multiply(Pz, MLz);

            // zero out...
            for (int i = 0; i < Px.Length; ++i)
            {
                MLx[i] = 0;
                MLy[i] = 0;
                MLz[i] = 0;
            }

            // allocate memory for internal buffers
            Preconditioner = new DiagonalMatrix(N);
            WeightsM       = new DiagonalMatrix(N);
            Cx             = new double[N]; Cy = new double[N]; Cz = new double[N];
            Bx             = new double[N]; By = new double[N]; Bz = new double[N];
            Sx             = new double[N]; Sy = new double[N]; Sz = new double[N];

            UpdateForSolve();
        }
Esempio n. 6
0
        public static void test_Matrices()
        {
            int N = 200;
            //int N = 2500;
            DenseMatrix           M1 = new DenseMatrix(N, N);
            SymmetricSparseMatrix M2 = new SymmetricSparseMatrix();

            for (int i = 0; i < N; ++i)
            {
                for (int j = i; j < N; ++j)
                {
                    if (i == j)
                    {
                        M1.Set(i, i, N);
                        M2.Set(i, i, N);
                    }
                    else if (j % 2 != 0)
                    {
                        double d = 1.0 / Math.Sqrt(i + j);
                        M1.Set(i, j, d);
                        M1.Set(j, i, d);
                        M2.Set(i, j, d);
                    }
                }
            }


            double[] X = new double[N], b1 = new double[N], b2 = new double[N];
            for (int i = 0; i < N; ++i)
            {
                X[i] = (double)i / (double)N;
            }

            M1.Multiply(X, b1);
            M2.Multiply(X, b2);

            for (int i = 0; i < N; ++i)
            {
                Debug.Assert(MathUtil.EpsilonEqual(b1[i], b2[i]));
            }

            Debug.Assert(M1.IsSymmetric());
            Debug.Assert(M1.IsPositiveDefinite());

            // test parallel cholesky decomposition

            LocalProfiler p = new LocalProfiler();

            p.Start("chol");
            CholeskyDecomposition decompM = new CholeskyDecomposition(M1);

            decompM.ComputeParallel();
            p.Stop("chol");
            //System.Console.WriteLine(p.AllTimes());

            DenseMatrix LLT_M1 = decompM.L.Multiply(decompM.L.Transpose());

            if (LLT_M1.EpsilonEquals(M1) == false)
            {
                System.Console.WriteLine("FAIL  choleskyM1 did not reproduce input");
            }

            // test cholesky-decomp backsubstitution

            Random r = new Random(31337);

            double[] RealX = TestUtil.RandomScalars(N, r, new Interval1d(-10, 10));
            double[] B     = new double[N], SolvedX = new double[N], TmpY = new double[N];
            M1.Multiply(RealX, B);
            decompM.Solve(B, SolvedX, TmpY);
            if (BufferUtil.DistanceSquared(RealX, SolvedX) > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("FAIL choleskyM1 backsubstution did not reproduce input vector");
            }


            // test case from: https://people.cs.kuleuven.be/~karl.meerbergen/didactiek/h03g1a/ilu.pdf
            //DenseMatrix tmp = new DenseMatrix(6, 6);
            //tmp.Set(new double[] {
            //    3,0,-1,-1,0,-1,
            //    0,2,0,-1,0,0,
            //    -1,0,3,0,-1,0,
            //    -1,-1,0,2,0,-1,
            //    0,0,-1,0,3,-1,
            //    -1,0,0,-1,-1,4});
            //CholeskyDecomposition decompDense = new CholeskyDecomposition(tmp);
            //decompDense.Compute();
            //PackedSparseMatrix M1_sparse = PackedSparseMatrix.FromDense(tmp, true);
            //M1_sparse.Sort();
            //SparseCholeskyDecomposition decompM1_sparse = new SparseCholeskyDecomposition(M1_sparse);
            //decompM1_sparse.ComputeIncomplete();


            // cholesky decomposition known-result test
            DenseMatrix MSym3x3 = new DenseMatrix(3, 3);

            MSym3x3.Set(new double[] { 25, 15, -5, 15, 18, 0, -5, 0, 11 });
            DenseMatrix MSym3x3_Chol = new DenseMatrix(3, 3);

            MSym3x3_Chol.Set(new double[] { 5, 0, 0, 3, 3, 0, -1, 1, 3 });
            CholeskyDecomposition decomp3x3 = new CholeskyDecomposition(MSym3x3);

            decomp3x3.Compute();
            if (decomp3x3.L.EpsilonEquals(MSym3x3_Chol) == false)
            {
                System.Console.WriteLine("FAIL  cholesky3x3 incorrect result");
            }
            if (decomp3x3.L.Multiply(decomp3x3.L.Transpose()).EpsilonEquals(MSym3x3) == false)
            {
                System.Console.WriteLine("FAIL  cholesky3x3 did not reproduce input");
            }

            // cholesky decomposition known-result test
            DenseMatrix MSym4x4 = new DenseMatrix(4, 4);

            MSym4x4.Set(new double[] {
                18, 22, 54, 42, 22, 70, 86, 62,
                54, 86, 174, 134, 42, 62, 134, 106
            });
            DenseMatrix MSym4x4_Chol = new DenseMatrix(4, 4);

            MSym4x4_Chol.Set(new double[] {
                4.24264, 0, 0, 0, 5.18545, 6.56591, 0, 0,
                12.72792, 3.04604, 1.64974, 0, 9.89949, 1.62455, 1.84971, 1.39262
            });
            CholeskyDecomposition decomp4x4 = new CholeskyDecomposition(MSym4x4);

            decomp4x4.Compute();
            if (decomp4x4.L.EpsilonEquals(MSym4x4_Chol, 0.0001) == false)
            {
                System.Console.WriteLine("FAIL  cholesky4x4 incorrect result");
            }
            if (decomp4x4.L.Multiply(decomp4x4.L.Transpose()).EpsilonEquals(MSym4x4) == false)
            {
                System.Console.WriteLine("FAIL  cholesky4x4 did not reproduce input");
            }
        }
Esempio n. 7
0
        public static void test_SparseCG_Precond()
        {
            // A test case where Jacobi preconditioner (ie M = diag(A)) provides some improvement
            // described in http://www.math.iit.edu/~fass/477577_Chapter_16.pdf

            int N = 10000;
            SymmetricSparseMatrix M = new SymmetricSparseMatrix();

            double[] B = new double[N];
            for (int i = 0; i < N; ++i)
            {
                for (int j = i; j < N; ++j)
                {
                    if (i == j)
                    {
                        M.Set(i, i, 0.5 + Math.Sqrt(i));
                    }
                    else if (Math.Abs(i - j) == 1)
                    {
                        M.Set(i, j, 1);
                    }
                    else if (Math.Abs(i - j) == 100)
                    {
                        M.Set(i, j, 1);
                    }
                }
                B[i] = 1;
            }

            SparseSymmetricCG Solver = new SparseSymmetricCG()
            {
                B = B, MultiplyF = M.Multiply
            };

            Solver.Solve();
            double[] BTest = new double[N];
            M.Multiply(Solver.X, BTest);
            double diff = BufferUtil.DistanceSquared(B, BTest);

            if (diff > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("test_SparseCG: initial solve failed!");
            }

            PackedSparseMatrix PackedM = new PackedSparseMatrix(M);

            PackedM.Sort();
            SparseSymmetricCG Solver_PackedM = new SparseSymmetricCG()
            {
                B = B, MultiplyF = PackedM.Multiply
            };

            Solver_PackedM.Solve();
            PackedM.Multiply(Solver_PackedM.X, BTest);
            double diff_packed = BufferUtil.DistanceSquared(B, BTest);

            if (diff_packed > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("test_SparseCG: Packed solve failed!");
            }

#if false
            SparseCholeskyDecomposition cholDecomp = new SparseCholeskyDecomposition(PackedM);
            cholDecomp.ComputeIncomplete();

            // factorization is filled with NaNs!! doing something wrong.

            double[] TmpX = new double[N], Y = new double[N];
            cholDecomp.Solve(BTest, TmpX, Y);

            // note: can also try just lower-triangular matrix - this is (L+D), Gauss-Seidel preconditioner?
            //   see http://www.math.iit.edu/~fass/477577_Chapter_16.pdf

            Action <double[], double[]> cholPrecond = (R, Z) => {
                cholDecomp.Solve(R, Z, Y);
            };

            SymmetricSparseMatrix diagPrecond = new SymmetricSparseMatrix(N);
            for (int k = 0; k < N; ++k)
            {
                diagPrecond[k, k] = 1.0 / M[k, k];
            }

            SparseSymmetricCG Solver_Precond = new SparseSymmetricCG()
            {
                B = B, MultiplyF = PackedM.Multiply, PreconditionMultiplyF = diagPrecond.Multiply
            };
            //SparseSymmetricCG Solver_Precond = new SparseSymmetricCG() { B = B, MultiplyF = PackedM.Multiply, PreconditionMultiplyF = cholPrecond };
            Solver_Precond.SolvePreconditioned();
            PackedM.Multiply(Solver_Precond.X, BTest);
            double diff_precond = BufferUtil.DistanceSquared(B, BTest);
            if (diff_precond > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("test_SparseCG: cholesky-preconditioned solve failed!");
            }

            System.Console.WriteLine("Iterations regular {0}  precond {1}", Solver_PackedM.Iterations, Solver_Precond.Iterations);
            System.Console.WriteLine("Tol regular {0}  precond {1}", diff_packed, diff_precond);
#endif
        }
Esempio n. 8
0
        public static void test_SparseCG()
        {
            Random r = new Random(31337);

            int N   = 100;
            var pts = TestUtil.RandomScalars(N, r, new Interval1d(1, 10));
            SymmetricSparseMatrix M = new SymmetricSparseMatrix();

            double[] B = new double[N];
            for (int i = 0; i < N; ++i)
            {
                for (int j = i; j < N; ++j)
                {
                    if (i == j)
                    {
                        M.Set(i, j, pts[i]);
                    }
                    else
                    {
                        M.Set(i, j, (double)(i + j) / 10.0);
                    }
                }
                B[i] = i + 1;
            }

            SparseSymmetricCG Solver = new SparseSymmetricCG()
            {
                B = B, MultiplyF = M.Multiply
            };

            Solver.Solve();
            double[] BTest = new double[N];
            M.Multiply(Solver.X, BTest);
            double diff = BufferUtil.DistanceSquared(B, BTest);

            if (diff > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("test_SparseCG: initial solve failed!");
            }

            PackedSparseMatrix PackedM = new PackedSparseMatrix(M);

            PackedM.Sort();
            SparseSymmetricCG Solver_PackedM = new SparseSymmetricCG()
            {
                B = B, MultiplyF = PackedM.Multiply
            };

            Solver_PackedM.Solve();
            PackedM.Multiply(Solver_PackedM.X, BTest);
            double diff_packed = BufferUtil.DistanceSquared(B, BTest);

            if (diff_packed > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("test_SparseCG: Packed solve failed!");
            }

#if false
            SparseCholeskyDecomposition decomp = new SparseCholeskyDecomposition(PackedM);
            decomp.ComputeIncomplete();
            PackedSparseMatrix choleskyPrecond = decomp.L.Square();

            SymmetricSparseMatrix diagPrecond = new SymmetricSparseMatrix(N);
            for (int k = 0; k < N; ++k)
            {
                diagPrecond[k, k] = 1.0 / M[k, k];
            }

            SparseSymmetricCG Solver_Precond = new SparseSymmetricCG()
            {
                B = B, MultiplyF = PackedM.Multiply, PreconditionMultiplyF = diagPrecond.Multiply
            };
            Solver_Precond.SolvePreconditioned();
            PackedM.Multiply(Solver_Precond.X, BTest);
            double diff_precond = BufferUtil.DistanceSquared(B, BTest);
            if (diff_precond > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("test_SparseCG: cholesky-preconditioned solve failed!");
            }

            System.Console.WriteLine("Iterations regular {0}  precond {1}", Solver_PackedM.Iterations, Solver_Precond.Iterations);
            System.Console.WriteLine("Tol regular {0}  precond {1}", diff_packed, diff_precond);
#endif
        }
        // [RMS] this only tests some basic cases...
        public static void test_Laplacian()
        {
            // compact version
            DMesh3 mesh = new DMesh3(TestUtil.MakeRemeshedCappedCylinder(1.0), true);

            Debug.Assert(mesh.IsCompact);

            AxisAlignedBox3d bounds = mesh.GetBounds();

            TestUtil.WriteDebugMesh(mesh, "___CG_before.obj");

            List <IMesh> result_meshes = new List <IMesh>();

            // make uniform laplacian matrix
            int N = mesh.VertexCount;
            SymmetricSparseMatrix M = new SymmetricSparseMatrix();

            //DenseMatrix M = new DenseMatrix(N, N);
            double[] Px = new double[N], Py = new double[N], Pz = new double[N];

            int[] nbr_counts = new int[N];
            for (int vid = 0; vid < N; ++vid)
            {
                nbr_counts[vid] = mesh.GetVtxEdgeCount(vid);
            }

            int        ti          = MeshQueries.FindNearestTriangle_LinearSearch(mesh, new Vector3d(2, 5, 2));
            int        v_pin       = mesh.GetTriangle(ti).a;
            List <int> constraints = new List <int>()
            {
                v_pin
            };
            double consW      = 10;
            double consBottom = 10;

            foreach (int vid in constraints)
            {
                result_meshes.Add(TestUtil.MakeMarker(mesh.GetVertex(vid), (vid == 0) ? 0.2f : 0.1f, Colorf.Red));
            }

            for (int vid = 0; vid < N; ++vid)
            {
                int      n = nbr_counts[vid];
                Vector3d v = mesh.GetVertex(vid), c = Vector3d.Zero;

                Px[vid] = v.x; Py[vid] = v.y; Pz[vid] = v.z;

                bool bottom = (v.y - bounds.Min.y) < 0.01f;

                double sum_w = 0;
                foreach (int nbrvid in mesh.VtxVerticesItr(vid))
                {
                    int n2 = nbr_counts[nbrvid];

                    // weight options
                    //double w = -1;
                    double w = -1.0 / Math.Sqrt(n + n2);
                    //double w = -1.0 / n;

                    M.Set(vid, nbrvid, w);

                    c     += w * mesh.GetVertex(nbrvid);
                    sum_w += w;
                }
                sum_w = -sum_w;

                M.Set(vid, vid, sum_w);

                // add soft constraints
                if (constraints.Contains(vid))
                {
                    M.Set(vid, vid, sum_w + consW);
                }
                else if (bottom)
                {
                    M.Set(vid, vid, sum_w + consBottom);
                }
            }

            // compute laplacians
            double[] MLx = new double[N], MLy = new double[N], MLz = new double[N];
            M.Multiply(Px, MLx);
            M.Multiply(Py, MLy);
            M.Multiply(Pz, MLz);


            DiagonalMatrix Preconditioner = new DiagonalMatrix(N);

            for (int i = 0; i < N; i++)
            {
                Preconditioner.Set(i, i, 1.0 / M[i, i]);
            }


            MLy[v_pin] += consW * 0.5f;
            MLx[v_pin] += consW * 0.5f;
            MLz[v_pin] += consW * 0.5f;

            bool useXAsGuess = true;
            // preconditioned
            SparseSymmetricCG SolverX = new SparseSymmetricCG()
            {
                B = MLx, X = Px, MultiplyF = M.Multiply, PreconditionMultiplyF = Preconditioner.Multiply, UseXAsInitialGuess = useXAsGuess
            };
            // initial solution
            SparseSymmetricCG SolverY = new SparseSymmetricCG()
            {
                B = MLy, X = Py, MultiplyF = M.Multiply, UseXAsInitialGuess = useXAsGuess
            };
            // neither of those
            SparseSymmetricCG SolverZ = new SparseSymmetricCG()
            {
                B = MLz, MultiplyF = M.Multiply
            };

            bool bx = SolverX.Solve();
            bool by = SolverY.Solve();
            bool bz = SolverZ.Solve();

            for (int vid = 0; vid < mesh.VertexCount; ++vid)
            {
                Vector3d newV = new Vector3d(SolverX.X[vid], SolverY.X[vid], SolverZ.X[vid]);
                mesh.SetVertex(vid, newV);
            }

            result_meshes.Add(mesh);
            TestUtil.WriteDebugMeshes(result_meshes, "___CG_result.obj");
        }