Esempio n. 1
0
        public override string ToString()
        {
            if (count < 1)
            {
                return(name + ": <no data>");
            }

            if (times)
            {
                double total_sec = total * 1.0 / Stopwatch.Frequency;
                if (count == 1)
                {
                    return(name + ": " + total_sec.ToString());
                }
                double average_sec = total_sec / count;
                double sumsq_sec   = sumsq / Stopwatch.Frequency / Stopwatch.Frequency;
                double variance    = (sumsq_sec - total_sec * total_sec / count) / (count - 1);
                double stdev       = Math.Sqrt(variance);
                double conf95      = StudentT.InvCDF(0, stdev, count - 1, 0.975) / Math.Sqrt(count);
                return(string.Format("Aggregate {0}: avg_usec {1} conf95plusorminus {2} stdev {3} count {4} sum {5}", name, average_sec * Math.Pow(10, 6), conf95 * Math.Pow(10, 6), stdev * Math.Pow(10, 6), count, total_sec * Math.Pow(10, 6)));
            }
            else
            {
                if (count == 1)
                {
                    return(total.ToString());
                }
                double average  = total * 1.0 / count;
                double variance = (sumsq - (total * 1.0 * total) / count) / (count - 1);
                double stdev    = Math.Sqrt(variance);
                double conf95   = StudentT.InvCDF(0, stdev, count - 1, 0.975) / Math.Sqrt(count);
                return(string.Format("Aggregate {0}: avg_usec {1} conf95plusorminus {2} stdev {3} count {4} sum {5}", name, average * Math.Pow(10, 6), conf95 * Math.Pow(10, 6), stdev * Math.Pow(10, 6), count, total * Math.Pow(10, 6)));
            }
        }
        public void ValidateInverseCumulativeDistribution(double location, double scale, double dof, double x, double p)
        {
            var dist = new StudentT(location, scale, dof);

            Assert.That(dist.InverseCumulativeDistribution(p), Is.EqualTo(x).Within(1e-6));
            Assert.That(StudentT.InvCDF(location, scale, dof, p), Is.EqualTo(x).Within(1e-6));
        }
Esempio n. 3
0
        /// <summary>
        /// Tau distribucija (razdioba)
        /// </summary>
        /// <param name="alfa">Nivo signifikantnosti (znacajnosti) -> 1 > alfa > 0</param>
        /// <param name="f">Stupanj slobode</param>
        /// <returns>double</returns>
        /// <remarks>
        ///     <para/>Distribucija interno studentiziranih mjerenja
        ///     <para/>Popravci i njihove standardne su korelirani
        ///     <para/>Allan J. Pope 1976.
        /// </remarks>
        public static double Tau(double alfa, int f)
        {
            double t = StudentT.InvCDF(0, 1, f - 1, 1 - alfa / 2);

            double tau = t * Math.Sqrt(f) / Math.Sqrt(f - 1 + Math.Pow(t, 2));

            return(tau);
        }
        public double[] ConfidenceIntervalSimulationTime(double confidence)
        {
            confidence = 1 - ((1 - confidence) / 2);
            double[] interval          = new double[2];
            double   avg               = _simulationTimeCumulative / _iterator;
            double   standardDeviation = Math.Sqrt((_simulationTimePower / _iterator) - Math.Pow(avg, 2));

            double value = 0;

            if (_iterator < 30)
            {
                value = StudentT.InvCDF(0.0, 1.0, _iterator, confidence);
            }
            else
            {
                value = Normal.InvCDF(0, 1, confidence);
            }

            interval[0] = avg - (value * standardDeviation / Math.Sqrt((_iterator - 1)));
            interval[1] = avg + (value * standardDeviation / Math.Sqrt((_iterator - 1)));

            return(interval);
        }
Esempio n. 5
0
 public static double GetCriticalValue(double significanceLevel, double df)
 {
     return(StudentT.InvCDF(0.0, 1.0, df, 1.0 - significanceLevel / 2.0));
 }
Esempio n. 6
0
 public static double TInv(double probability, int degreesFreedom)
 {
     return(-StudentT.InvCDF(0d, 1d, degreesFreedom, probability / 2));
 }
Esempio n. 7
0
 /// <summary>
 /// Inverzna Student (T) distribucija (razdioba)
 /// </summary>
 /// <param name="alfa">Nivo signifikantnosti (znacajnosti) -> 1 > alfa > 0</param>
 /// <param name="f">Stupanj slobode</param>
 /// <returns>double</returns>
 public static double Student(double alfa, int f)
 {
     return(StudentT.InvCDF(0, 1, f, 1 - alfa));
 }
 public static double T_INV_2T(double p, double nu)
 {
     return(StudentT.InvCDF(location: 0.0, scale: 1.0, freedom: nu, p: 1.0 - p / 2.0));
 }
 private double ConfidenceInterval95(List <double> l, double standardError)
 {
     return(-StudentT.InvCDF(0, 1, l.Count - 1, 0.025) * standardError);
 }